1
|
Yang XJ and Seto E: Lysine acetylation:
Codified crosstalk with other post-translational modifications. Mol
Cell. 31:449–461. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kouzarides T: Chromatin modifications and
their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jenuwein T and Allis CD: Translating the
histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sanchez R, Meslamani J and Zhou MM: The
bromodomain: From epigenome reader to druggable target. Biochim
Biophys Acta. 1839:676–685. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tamkun JW, Deuring R, Scott MP, Kissinger
M, Pattatucci AM, Kaufman TC and Kennison JA: brahma: A regulator
of Drosophila homeotic genes structurally related to the
yeast transcriptional activator SNF2/SWI2. Cell. 68:561–572. 1992.
View Article : Google Scholar : PubMed/NCBI
|
6
|
French CA: NUT midline carcinoma. Cancer
Genet Cytogenet. 203:16–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
French CA, Ramirez CL, Kolmakova J,
Hickman TT, Cameron MJ, Thyne ME, Kutok JL, Toretsky JA, Tadavarthy
AK, Kees UR, et al: BRD-NUT oncoproteins: A family of closely
related nuclear proteins that block epithelial differentiation and
maintain the growth of carcinoma cells. Oncogene. 27:2237–2242.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zuber J, Shi J, Wang E, Rappaport AR,
Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, et al:
RNAi screen identifies Brd4 as a therapeutic target in acute
myeloid leukaemia. Nature. 478:524–528. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mertz JA, Conery AR, Bryant BM, Sandy P,
Balasubramanian S, Mele DA, Bergeron L and Sims RJ III: Targeting
MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl
Acad Sci USA. 108:16669–16674. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brand M, Measures AR, Wilson BG,
Cortopassi WA, Alexander R, Höss M, Hewings DS, Rooney TP, Paton RS
and Conway SJ: Small molecule inhibitors of
bromodomain-acetyl-lysine interactions. ACS Chem Biol. 10:22–39.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
French CA, Miyoshi I, Kubonishi I, Grier
HE, Perez-Atayde AR and Fletcher JA: BRD4-NUT fusion oncogene: A
novel mechanism in aggressive carcinoma. Cancer Res. 63:304–307.
2003.PubMed/NCBI
|
12
|
Thorne N, Auld DS and Inglese J: Apparent
activity in high-throughput screening: Origins of
compound-dependent assay interference. Curr Opin Chem Biol.
14:315–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Simeonov A, Yasgar A, Klumpp C, Zheng W,
Shafqat N, Oppermann U, Austin CP and Inglese J: Evaluation of
micro-parallel liquid chromatography as a method for HTS-coupled
actives verification. Assay Drug Dev Technol. 5:815–824. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Shapiro AB, Walkup GK and Keating TA:
Correction for interference by test samples in high-throughput
assays. J Biomol Screen. 14:1008–1016. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Weber E, Rothenaigner I, Brandner S,
Hadian K and Schorpp K: A high-throughput screening strategy for
development of RNF8-Ubc13 protein-protein interaction inhibitors.
SLAS Discov. 22:316–323. 2017.PubMed/NCBI
|
16
|
Carter DM, Specker E, Przygodda J,
Neuenschwander M, von Kries JP, Heinemann U, Nazaré M and Gohlke U:
Identification of a novel benzimidazole pyrazolone scaffold that
inhibits KDM4 lysine demethylases and reduces proliferation of
prostate cancer cells. SLAS Discov. 22:801–812. 2017.PubMed/NCBI
|
17
|
Dahlin JL, Nissink JW, Strasser JM,
Francis S, Higgins L, Zhou H, Zhang Z and Walters MA: PAINS in the
assay: Chemical mechanisms of assay interference and promiscuous
enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J
Med Chem. 58:2091–2113. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jang MK, Mochizuki K, Zhou M, Jeong HS,
Brady JN and Ozato K: The bromodomain protein Brd4 is a positive
regulatory component of P-TEFb and stimulates RNA polymerase
II-dependent transcription. Mol Cell. 19:523–534. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Z, He N and Zhou Q: Brd4 recruits
P-TEFb to chromosomes at late mitosis to promote G1 gene expression
and cell cycle progression. Mol Cell Biol. 28:967–976. 2008.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Raux B, Voitovich Y, Derviaux C, Lugari A,
Rebuffet E, Milhas S, Priet S, Roux T, Trinquet E, Guillemot JC, et
al: Exploring selective inhibition of the first bromodomain of the
human bromodomain and extra-terminal domain (BET) proteins. J Med
Chem. 59:1634–1641. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao L, Wang Y, Cao D, Chen T, Wang Q, Li
Y, Xu Y, Zhang N, Wang X, Chen D, et al: Fragment-based drug
discovery of 2-thiazolidinones as BRD4 inhibitors: 2.
Structure-based optimization. J Med Chem. 58:1281–1297. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Tanaka M, Roberts JM, Seo HS, Souza A,
Paulk J, Scott TG, DeAngelo SL, Dhe-Paganon S and Bradner JE:
Design and characterization of bivalent BET inhibitors. Nat Chem
Biol. 12:1089–1096. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang Y, Fang L, Chen P, Zhang H and Zhou
J: Identification of 3,5-dimethylisoxazole derivatives as BRD4
inhibitors for the treatment of colorectal cancer. ACS Med Chem
Lett. 11:2174–2181. 2020. View Article : Google Scholar : PubMed/NCBI
|