Possibility of inducing tumor cell senescence during therapy (Review)
- Authors:
- Guohui Wang
- Xianliang Cheng
- Jingyi Zhang
- Yuan Liao
- Yinnong Jia
- Chen Qing
-
Affiliations: School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China - Published online on: April 27, 2021 https://doi.org/10.3892/ol.2021.12757
- Article Number: 496
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
van Deursen JM: The role of senescent cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI | |
He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI | |
te Poele RH, Okorokov AL, Jardine L, Cummings J and Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62:1876–1883. 2002.PubMed/NCBI | |
Wang Z, Liu H and Xu C: Cellular senescence in the treatment of ovarian cancer. Int J Gynecol Cancer. 28:895–902. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saretzki G and Von Zglinicki T: Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci. 959:24–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Yang M, Zhang Y, Lan M, Huang B, Liu H and Zhou Y: Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int J Mol Med. 41:3316–3326. 2018.PubMed/NCBI | |
Chandeck C and Mooi WJ: Oncogene-induced cellular senescence. Adv Anat Pathol. 17:42–48. 2010. View Article : Google Scholar : PubMed/NCBI | |
Falandry C, Bonnefoy M, Freyer G and Gilson E: Biology of cancer and aging: A complex association with cellular senescence. J Clin Oncol. 32:2604–2610. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baeeri M, Bahadar H, Rahimifard M, Navaei-Nigjeh M, Khorasani R, Rezvanfar MA, Gholami M and Abdollahi M: α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol Res. 141:214–223. 2019. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell. 120:513–522. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Armstrong JL, Tchkonia T and Kirkland JL: Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 17:324–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI | |
Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M and Gorgoulis VG: Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 5:37–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS and Goldman RD: The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25:2579–2593. 2011. View Article : Google Scholar : PubMed/NCBI | |
Swanson EC, Manning B, Zhang H and Lawrence JB: Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 203:929–942. 2013. View Article : Google Scholar : PubMed/NCBI | |
Faget DV, Ren Q and Stewart SA: Unmasking senescence: Context-dependent effects of SASP in cancer. Nat Rev Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qu K, Lin T, Wei J, Meng F, Wang Z, Huang Z, Wan Y, Song S, Liu S, Chang H, et al: Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao. 33:1253–1259. 2013.PubMed/NCBI | |
Yao GD, Yang J, Li Q, Zhang Y, Qi M, Fan SM, Hayashi T, Tashiro S, Onodera S and Ikejima T: Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro. Acta Pharmacol Sin. 37:919–929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang JW, Zhang SS, Song JR, Sun K, Zong C, Zhao QD, Liu WT, Li R, Wu MC and Wei LX: Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol. 90:265–275. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shtutman M, Chang BD, Schools GP and Broude EV: Cellular model of p21-induced senescence. Methods Mol Biol. 1534:31–39. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodenak-Kladniew B, Castro A, Stärkel P, De Saeger C, García de Bravo M and Crespo R: Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 199:48–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ewald JA, Desotelle JA, Wilding G and Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer Inst. 102:1536–1546. 2010. View Article : Google Scholar : PubMed/NCBI | |
Geng YQ, Guan JT, Xu XH and Fu YC: Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun. 396:866–869. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aird KM and Zhang R: Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 965:185–196. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bernardes de Jesus B and Blasco MA: Assessing cell and organ senescence biomarkers. Circ Res. 111:97–109. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park CW, Bak Y, Kim MJ, Srinivasrao G, Hwang J, Sung NK, Kim BY, Yu JH, Hong JT and Yoon DY: The novel small molecule STK899704 promotes senescence of the human A549 NSCLC cells by inducing DNA damage responses and cell cycle arrest. Front Pharmacol. 9:1632018. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Pang L and Jiao S: The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture. Biosci Rep. 38:BSR201800642018. View Article : Google Scholar : PubMed/NCBI | |
Nadeau S, Cheng A, Colmegna I and Rodier F: Quantifying senescence-associated phenotypes in primary multipotent mesenchymal stromal cell cultures. Methods Mol Biol. 2045:93–105. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bernhart E, Damm S, Heffeter P, Wintersperger A, Asslaber M, Frank S, Hammer A, Strohmaier H, DeVaney T, Mrfka M, et al: Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro Oncol. 16:933–945. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matjusaitis M, Chin G, Sarnoski EA and Stolzing A: Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 29:1–12. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aravinthan A, Mells G, Allison M, Leathart J, Kotronen A, Yki-Jarvinen H, Daly AK, Day CP, Anstee QM and Alexander G: Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease. Cell Cycle. 13:1489–1494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sasaki M, Kuo FY, Huang CC, Swanson PE, Chen CL, Chuang JH and Yeh MM: Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: An immunohistochemical study. Histopathology. 72:1164–1171. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marcoux S, Le ON, Langlois-Pelletier C, Laverdière C, Hatami A, Robaey P and Beauséjour CM: Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: A pilot study. Radiat Oncol. 8:2522013. View Article : Google Scholar : PubMed/NCBI | |
Pare R, Shin JS and Lee CS: Increased expression of senescence markers p14 (ARF) and p16(INK4a) in breast cancer is associated with an increased risk of disease recurrence and poor survival outcome. Histopathology. 69:479–491. 2016. View Article : Google Scholar : PubMed/NCBI | |
Valdiglesias V, Giunta S, Fenech M, Neri M and Bonassi S: γ-H2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 753:24–40. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noren Hooten N and Evans MK: Techniques to induce and quantify cellular senescence. J Vis Exp. 555332017.doi: 10.3791/55533. PubMed/NCBI | |
Ko A, Han SY, Choi CH, Cho H, Lee MS, Kim SY, Song JS, Hong KM, Lee HW, Hewitt SM, et al: Oncogene-induced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF. Cell Death Differ. 25:1050–1062. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salama RH, Sayed ZEA, Ashmawy AM, Elsewify WA, Ezzat GM, Mahmoud MA, Alsanory AA and Alsanory TA: Interrelations of apoptotic and cellular senescence genes methylation in inflammatory bowel disease subtypes and colorectal carcinoma in Egyptians patients. Appl Biochem Biotechnol. 189:330–343. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J and Demaria M: Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 27:2652–2660.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G and Galderisi U: Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 8:1316–1329. 2016. View Article : Google Scholar | |
Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sage J, Attardi L and Dyke TV: Roles of p53 and pRB tumor suppressor networks in human cancer: Insight from studies in the engineered mouse. Genetically Engineered Mice Cancer Res. 293–308. 2012. View Article : Google Scholar | |
Chellappan SP, Hiebert S, Mudryj M, Horowitz JM and Nevins JR: The E2F transcription factor is a cellular target for the RB protein. Cell. 65:1053–1061. 1991. View Article : Google Scholar : PubMed/NCBI | |
Was H, Czarnecka J, Kowalczyk A, Barszcz K, Bernas T, Piwocka K and Kaminska B: Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features. Cancer Biol Ther. 19:63–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mao Z, Ke Z, Gorbunova V and Seluanov A: Replicatively senescent cells are arrested in G1 and G2 phases. Aging (Albany NY). 4:431–435. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu YY, Fang F, Li M, Qian GH, Li YH, et al: Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int. 17:352017. View Article : Google Scholar : PubMed/NCBI | |
Vijayaraghavan S and Keyomarsi K: An intact G1/S checkpoint determines response to CDK4/6 inhibitor in breast cancer. Cancer Res. 76:29892016. | |
Vijayaraghavan S and Keyomarsi K: Abstract P5-08-02: Inhibition of CDK4/6 induces senescence and autophagy in ER positive breast cancers. Cancer Res. 75:P5–08-02. 2015. | |
Nelson DM, McBryan T, Jeyapalan JC, Sedivy JM and Adams PD: A comparison of oncogene-induced senescence and replicative senescence: Implications for tumor suppression and aging. Age (Dordr). 36:96372014. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Liu X, Ding X, Wang F and Geng X: Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 20:1–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Artandi SE and DePinho RA: Role of telomeres and telomerase in cancer. Carcinogenesis. 31:9–18. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shitara S, Kakeda M, Nagata K, Hiratsuka M, Sano A, Osawa K, Okazaki A, Katoh M, Kazuki Y, Oshimura M and Tomizuka K: Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biochem Biophys Res Commun. 369:807–811. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI | |
Barma DK, Elayadi A, Falck JR and Corey DR: Inhibition of telomerase by BIBR 1532 and related analogues. Bioorg Med Chem Lett. 13:1333–1336. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hájek M, Matulová N, Votruba I, Holý A and Tloust'ová E: Inhibition of human telomerase by diphosphates of acyclic nucleoside phosphonates. Biochem Pharmacol. 70:894–900. 2005. View Article : Google Scholar | |
Ji XM, Xie CH, Fang MH, Zhou FX, Zhang WJ, Zhang MS and Zhou YF: Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cell storadiotherapy. Acta Pharmacol Sin. 27:1185–1191. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kondo Y and Kondo S: Telomerase RNA inhibition using antisense oligonucleotide against human telomerase RNA linked to a 2′,5′-Oligoadenylate. Methods Mol Biol. 405:97–112. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shammas MA, Simmons CG, Corey DR and Shmookler Reis RJ: Telomerase inhibition by peptide nucleic acids reverses ‘immortality’ of transformed human cells. Oncogene. 18:6191–6200. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem. 277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U and Castelo-Branco P: Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: Clinical impacts in cancer. J Biomed Sci. 25:222018. View Article : Google Scholar | |
Reczek CR and Chandel NS: ROS promotes cancer cell survival through calcium signaling. Cancer Cell. 33:949–951. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Huang C, Sun A, Qiao L, Zhang X, Huang J, Sun X, Yang X and Sun S: Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo. Biomed Pharmacother. 106:1126–1134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Huang Q, Huang S, Yang X, Zhu T, Wang W, Wang H, He S, Ji L, Wang Y, et al: Senescence inducer Shikonin ROS-dependently suppressed lung cancer progression. Front Pharmacol. 9:5192018. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Fischer A, Reagan JD, Yan LJ and Ames BN: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA. 92:4337–4341. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pan Jing CJ: Advances in study of the mechanisms of cellular senescence. J Pathogen Biol. 10:672–673. 2015. | |
Probin V, Wang Y and Zhou D: Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med. 42:1858–1865. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mirzayans R, Andrais B, Kumar P and Murray D: Significance of Wild-type p53 signaling in suppressing apoptosis in response to chemical genotoxic agents: Impact on chemotherapy outcome. Int J Mol Sci. 18:9282017. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI | |
Driscoll DL, Chakravarty A, Bowman D, Shinde V, Lasky K, Shi J, Vos T, Stringer B, Amidon B, D'Amore N and Hyer ML: Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines. PLoS One. 9:e1110602014. View Article : Google Scholar : PubMed/NCBI | |
Klement K and Goodarzi AA: DNA double strand break responses and chromatin alterations within the aging cell. Exp Cell Res. 329:42–52. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yanai M, Makino H, Ping B, Takeda K, Tanaka N, Sakamoto T, Yamaguchi K, Kodani M, Yamasaki A, Igishi T and Shimizu E: DNA-PK inhibition by NU7441 enhances Chemosensitivity to topoisomerase inhibitor in non-small cell lung carcinoma cells by blocking DNA damage repair. Yonago Acta Med. 60:9–15. 2017.PubMed/NCBI | |
Robles SJ, Buehler PW, Negrusz A and Adami GR: Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem Pharmacol. 58:675–685. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Lin ZX and Zhang ZQ: Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts. Cell Res. 14:60–66. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang JC and Bennett M: Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 111:245–259. 2012. View Article : Google Scholar : PubMed/NCBI | |
Finkel T, Serrano M and Blasco MA: The common biology of cancer and ageing. Nature. 448:767–774. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M and Alt FW: DNA repair, genome stability, and aging. Cell. 120:0–512. 2005. View Article : Google Scholar : PubMed/NCBI | |
Benanti JA and Galloway DA: Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol. 24:2842–2852. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sheng GY, Yi XR, Ting JS and Ying L: Current advances of Ras induced senescence and the bypass mechanism. Progress Bioch Biophysics. 43:652–660. 2016. | |
Balmus G, Zhu M, Mukherjee S, Lyndaker AM, Hume KR, Lee J, Riccio ML, Reeves AP, Sutter NB, Noden DM, et al: Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1. Hum Mol Genet. 21:3408–3420. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S and Teng SC: Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res. 45:8314–8328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lima CRDO, Rabelo RE, Vulcani VAS, Cardoso LD, de Sousa NLM and de Moura VMBD: P53 gene: Major mutations in neoplasias and anticancer gene therapy. Cienc Rural. 42:845–853. 2012. View Article : Google Scholar | |
Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C and von Zglinicki T: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 8:311–323. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, et al: p53 mutant mice that display early ageing-associated phenotypes. Nature. 415:45–53. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Zhao W, Zhou C, Wawrowsky K and Melmed S: PTTG1 attenuates drug-induced cellular senescence. PLoS One. 6:e237542011. View Article : Google Scholar : PubMed/NCBI | |
Ling X, Xu C, Fan C, Zhong K, Li F and Wang X: FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 74:7487–7497. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY and Campisi J: Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 286:36396–36403. 2011. View Article : Google Scholar | |
Mirzayans R, Andrais B, Hansen G and Murray D: Role of p16(INK4A) in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem Res Int. 2012:9515742012. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Gao Y, He HH, Han D, Han W, Avery A, Macoska JA, Liu X, Chen S, Ma F, et al: Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep. 17:966–976. 2016. View Article : Google Scholar : PubMed/NCBI | |
Passegué E and Wagner EF: JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J. 19:2969–2979. 2000. View Article : Google Scholar | |
Baek MW, Cho HS, Kim SH, Kim WJ and Jung JY: Ascorbic acid induces necrosis in human laryngeal squamous cell carcinoma via ROS, PKC, and calcium signaling. J Cell Physiol. 232:417–425. 2017. View Article : Google Scholar : PubMed/NCBI | |
Min EY, Kim IH, Lee J, Kim EY, Choi YH and Nam TJ: The effects of fucodian on senescence are controlled by the p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma and hepatic cell lines. Int J Oncol. 45:47–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakade K, Lin CS, Chen XY, Tsai MH, Wuputra K, Zhu ZW, Pan JZ and Yokoyama KK: Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16Ink4a-pRb and Arf-p53 pathways. FEBS Open Bio. 7:1793–1804. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S and Sharpless NE: p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 443:453–457. 2006. View Article : Google Scholar : PubMed/NCBI | |
Da Silva-Álvarez S, Picallos-Rabina P, Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez L and Collado M: The development of cell senescence. Exp Gerontol. 128:1107422019. View Article : Google Scholar | |
Zhao Y, Aguilar A, Bernard D and Wang S: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J Med Chem. 58:1038–1052. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Huang KE, Pan YL, Zhou Y, Pan SD, Li X, Jia J, Zheng XL and Tao DY: KIT and BRAF heterogeneous mutations in gastrointestinal stromal tumors after secondary imatinib resistance. Gastric Cancer. 18:796–802. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Fu J, Rew Y, Gribble MW and Medina JC: Abstract 3663: Discovery of sulfonamide-piperidinones as potent inhibitors of the MDM2-p53 protein-protein interaction. Cancer Res. 75:3663. 2015.PubMed/NCBI | |
Seipel K, Marques M, Sidler C, Mueller BU and Pabst T: The cellular p53 inhibitor MDM2 and the growth factor receptor FLT3 as biomarkers for treatment responses to the MDM2-inhibitor idasanutlin and the MEK1 inhibitor cobimetinib in acute myeloid leukemia. Cancers. 10:1702018. View Article : Google Scholar : PubMed/NCBI | |
Yue Z, Rong J, Ping W, Bing Y, Xin Y, Feng LD and Yaping W: Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1. Genet Mol Res. 13:10086–10096. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Hemmer RM and Sedivy JM: Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol. 21:6748–6757. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, et al: STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 6:77362015. View Article : Google Scholar : PubMed/NCBI | |
Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM and Hershko A: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sharma SS, Ma L and Pledger WJ: p27Kip1 inhibits the cell cycle through non-canonical G1/S phase-specific gatekeeper mechanism. Cell Cycle. 14:3954–3964. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Guo D, Li W and Zhao H: Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27(KIP1). Tumour Biol. 36:6909–6917. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Liu F, Jiang B and Wang Y: The expression of Skp2 in human non-small cell lung cancer and its correlation with expression of p27 protein. Zhongguo Fei Ai Za Zhi. 11:547–550. 2008.(In Chinese). PubMed/NCBI | |
Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I and Hershko DD: The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hafez MM, Alhoshani AR, Al-Hosaini KA, Alsharari SD, Al Rejaie SS, Sayed-Ahmed MM and Al-Shabanah OA: SKP2/P27Kip1 pathway is associated with advanced ovarian cancer in Saudi patients. Asian Pac J Cancer Prev. 16:5807–5815. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J and Krek W: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI | |
Olins AL, Rhodes G, Welch DBM, Zwerger M and Olins DE: Lamin B receptor: Multi-tasking at the nuclear envelope. Nucleus. 1:53–70. 2010. View Article : Google Scholar : PubMed/NCBI | |
En A, Takauji Y, Ayusawa D and Fujii M: The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp Cell Res. 390:1119272020. View Article : Google Scholar : PubMed/NCBI | |
Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita M, Pérez-Mancera PA, Bennett DC, Chong H, et al: Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27:1800–1808. 2013. View Article : Google Scholar : PubMed/NCBI | |
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, et al: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 152:584–598. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M and Ayusawa D: Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev. 178:25–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Latorre E, Ostler EL, Faragher RGA and Harries LW: FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence. FASEB J. 33:1086–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Q, Xue S, Tan Y, Zhang L, Shao Q, Xing L, Li Y, Xiang T, Luo X and Ren G: Dual inhibition of Akt and ERK signaling induces cell senescence in triple-negative breast cancer. Cancer Lett. 448:94–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lam EW, Francis RE and Petkovic M: FOXO transcription factors: Key regulators of cell fate. Biochem Soc Trans. 34:722–726. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clark O, Daga S and Stoker AW: Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Lett. 328:44–54. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Zhao J, Chen M, Wang H, Yao Q, Fan J and Zhang M: The Anti-aging effect of erythropoietin via the ERK/Nrf2-ARE pathway in aging rats. J Mol Neurosci. 61:449–458. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kucheryavenko O, Nelson G, von Zglinicki T, Korolchuk VI and Carroll B: The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology. 20:331–335. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shan HY, Bai XJ and Chen XM: Apoptosis is involved in the senescence of endothelial cells induced by angiotensin II. Cell Biol Int. 32:264–270. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goruppi S and Dotto GP: Mesenchymal Stroma: Primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol. 23:593–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee S and Schmitt CA: The dynamic nature of senescence in cancer. Nat Cell Biol. 21:94–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
Krizhanovsky V, Yon M and Dickins RA: Senescence of activated stellate cells limits liver fibrosis. Cell. 134:657–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Burton DGA and Krizhanovsky V: Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 71:4373–4386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Demaria M, Desprez PY, Campisi J and Velarde MC: Cell Autonomous and Non-autonomous effects of senescent cells in the skin. J Invest Dermatol. 135:1722–1726. 2015. View Article : Google Scholar : PubMed/NCBI | |
Muller M, Li Z and Maitz PKM: Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns. 35:500–508. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bitar MS, Abdel-Halim SM and Al-Mulla F: Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: Implications for evidence-based therapy of delayed wound healing in diabetes. Am J Physiol Endocrinol Metab. 305:E951–E963. 2013. View Article : Google Scholar : PubMed/NCBI | |
Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, et al: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 444:633–637. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI | |
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T and Schmitt CA: Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 436:660–665. 2005. View Article : Google Scholar : PubMed/NCBI | |
Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM, Barbacid M, et al: Tumour biology: Senescence in premalignant tumours. Nature. 436:6422005. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Aging and cancer: The double-edged sword of replicative senescence. J Am Geriatr Soc. 45:482–488. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mavrogonatou E, Pratsinis H and Kletsas D: The role of senescence in cancer development. Semin Cancer Biol. 62:182–191. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rao SG and Jackson JG: SASP: Tumor suppressor or promoter? Yes! Trends Cancer. 2:676–687. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W and Xu J: SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 35:4321–4334. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Shi L, Lei J, Li B and Jin Y: Advances in optical assays for detecting telomerase activity. Luminescence. 34:136–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Larsson C and Xu D: Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene. 38:6172–6183. 2019. View Article : Google Scholar : PubMed/NCBI |