Role of the IL‑33/ST2 receptor axis in ovarian cancer progression (Review)
- Authors:
- Ning Liu
- Jintong Chen
- Yinghua Zhao
- Mingyue Zhang
- Li Piao
- Siqing Wang
- Ying Yue
-
Affiliations: Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China, Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China - Published online on: April 29, 2021 https://doi.org/10.3892/ol.2021.12765
- Article Number: 504
This article is mentioned in:
Abstract
Li SS, Ma J and Wong AST: Chemoresistance in ovarian cancer: Exploiting cancer stem cell metabolism. J Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agarwal R and Kaye SB: Ovarian cancer: Strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 3:502–516. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Hansen DM, Timko NJ, Zhu Z, Ames A, Qin C, Nicholl MB, Bai Q, Chen X, Wakefield MR, et al: Association between interleukin-33 and ovarian cancer. Oncol Rep. 41:1045–1050. 2019.PubMed/NCBI | |
Saied EM and El-Etreby NM: The role and prognostic value of inducible nitric oxide synthase (iNOS) and interleukin-33 (IL-33) in serous and mucinous epithelial ovarian tumours. Ann Diagn Pathol. 27:62–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Barbour M, Hou K, Gao C, Cao S, Zheng J, Zhao Y, Mu R and Jiang HR: Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis through regulating ERK and JNK signaling pathways. Mol Oncol. 10:113–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
De la Fuente M, MacDonald TT and Hermoso MA: The IL-33/ST2 axis: Role in health and disease. Cytokine Growth Factor Rev. 26:615–623. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hoffman Bl SJ, Schaffer JI, Halvorson LM, Bradshaw KD and Cunningham FG: Epithelian ovarian cancer. Williams Gynecology. 2nd edition. McGraw-Hill; New York, NY: pp. 853–878. 2012 | |
Gong TT, Wu QJ, Vogtmann E, Lin B and Wang YL: Age at menarche and risk of ovarian cancer: A meta-analysis of epidemiological studies. Int J Cancer. 132:2894–2900. 2013. View Article : Google Scholar : PubMed/NCBI | |
Longo DL, Fauci A, Kasper D, Hauser S, Jameson JL and Loscalzo J: Harrison's Principles of Internal Medicine. 18th edition. McGraw-Hill; New York, NY: 2012 | |
Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MD, Wendl MC, Zhang Q, Koboldt DC, Xie M, Kandoth C, et al: Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 5:31562014. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Monk BJ, Sood AK and Herzog TJ: Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 10:211–224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deshmukh A, Deshpande K, Arfuso F, Newsholme P and Dharmarajan A: Cancer stem cell metabolism: A potential target for cancer therapy. Mol Cancer. 15:692016. View Article : Google Scholar : PubMed/NCBI | |
Chen G and Emens LA: Chemoimmunotherapy: Reengineering tumor immunity. Cancer Immunol Immunother. 62:203–216. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chu CS, Boyer J, Schullery DS, Gimotty PA, Gamerman V, Bender J, Levine BL, Coukos G, Rubin SC, Morgan MA, et al: Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother. 61:629–641. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hyman DM, Zhou Q, Iasonos A, Grisham RN, Arnold AG, Phillips MF, Bhatia J, Levine DA, Aghajanian C, Offit K, et al: Improved survival for BRCA2-associated serous ovarian cancer compared with both BRCA-negative and BRCA1-associated serous ovarian cancer. Cancer. 118:3703–3709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK and Zhang W: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 306:1557–1565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kanduc D: Oligopeptides for immunotherapy approaches in ovarian cancer treatment. Curr Drug Discov Technol. 16:285–289. 2019. View Article : Google Scholar : PubMed/NCBI | |
Argento M, Hoffman P and Gauchez AS: Ovarian cancer detection and treatment: Current situation and future prospects. Anticancer Res. 28((5B)): 3135–3138. 2008.PubMed/NCBI | |
Jayson GC, Kohn EC, Kitchener HC and Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schlienger K, Chu C S, Woo E Y, Rivers P M, Toll A J, Hudson B, Maus MV, Riley JL, Choi Y and Coucos G: TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin Cancer Res. 9:1517–1527. 2003.PubMed/NCBI | |
Goodell V, Salazar LG, Urban N, Drescher CW, Gray H, Swensen RE, McIntosh MW and Disis ML: Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol. 24:762–768. 2006. View Article : Google Scholar : PubMed/NCBI | |
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, et al: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA. 104:3360–3365. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hardwick N, Frankel PH and Cristea M: New approaches for immune directed treatment for ovarian cancer. Curr Treat Options Oncol. 17:142016. View Article : Google Scholar : PubMed/NCBI | |
Onda H, Kasuya H, Takakura K, Hori T, Imaizumi T, Takeuchi T, Inoue I and Takeda J: Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 19:1279–1288. 1999. View Article : Google Scholar : PubMed/NCBI | |
Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G and Girard JP: Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 163:69–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Chang B, Gao M, Zhang J and Zou Z: IL-33-ST2 axis in liver disease: Progression and challenge. Mediators Inflamm. 2017:53142132017. View Article : Google Scholar : PubMed/NCBI | |
Roussel L, Erard M, Cayrol C and Girard JP: Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep. 9:1006–1012. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH, Iglesias A and Cote-Sierra J: Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmun. 55:33–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xi H, Katschke KJ Jr, Li Y, Truong T, Lee WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, et al: IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med. 213:189–207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Hammel M, He Y, Tainer JA, Jeng US, Zhang L, Wang S and Wang X: Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci USA. 110:14918–14923. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cayrol C and Girard JP: Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 281:154–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cayrol C and Girard JP: IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 31:31–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mirchandani AS, Salmond RJ and Liew FY: Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 33:389–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C, Bazan JF and Fairbrother WJ: Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors-insight into heterotrimeric IL-1 signaling complexes. Structure. 17:1398–1410. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tago K, Noda T, Hayakawa M, Iwahana H, Yanagisawa K, Yashiro T and Tominaga S: Tissue distribution and subcellular localization of a variant form of the human ST2 gene product, ST2V. Biochem Biophys Res Commun. 285:1377–1383. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iwahana H, Yanagisawa K, Ito-Kosaka A, Kuroiwa K, Tago K, Komatsu N, Katashima R, Itakura M and Tominaga S: Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur J Biochem. 264:397–406. 1999. View Article : Google Scholar : PubMed/NCBI | |
Larsen KM, Minaya MK, Vaish V and Peña MMO: The role of IL-33/ST2 pathway in tumorigenesis. Int J Mol Sci. 19:E26762018. View Article : Google Scholar | |
Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G and Girard JP: IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci (USA). 104:282–287. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML and Martin MU: The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol. 187:1609–1616. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Tossberg JT, Spurlock CF, Yao SY, Aune TM and Sriram S: Expression of IL-33 and its epigenetic regulation in Multiple Sclerosis. Ann Clin Transl Neurol. 1:307–318. 2014. View Article : Google Scholar : PubMed/NCBI | |
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH and Umetsu DT: Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 12:631–638. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yasuda K, Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, Taki Y, Futatsugi-Yumikura S, Tsutsui H, Ishii KJ, et al: Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci (USA). 109:3451–3456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen WY, Li LC and Yang JL: Emerging roles of IL-33/ST2 axis in renal diseases. Int J Mol Sci. 18:E7832017. View Article : Google Scholar | |
Sun M, He C, Wu W, Zhou G, Liu F, Cong Y and Liu Z: Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease. Clin Exp Immunol. 187:428–440. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu SL, Wong CK and Tam LS: The alarmin functions of high-mobility group box-1 and IL-33 in the pathogenesis of systemic lupus erythematosus. Expert Rev Clin Immunol. 9:739–749. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen WY, Chang YJ, Su CH, Tsai TH, Chen SD, Hsing CH and Yang JL: Upregulation of interleukin-33 in obstructive renal injury. Biochem Biophys Res Commun. 473:1026–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Çekmez F, Fidanci MK, Ayar G, Saldir M, Karaoglu A, Gündüz RC, Tunc T and Kalkan G: Diagnostic value of upar, IL-33, and ST2 Levels in childhood sepsis. Clin Lab. 62:751–755. 2016. View Article : Google Scholar | |
Parenica J, Malaska J, Jarkovsky J, Lipkova J, Dastych M, Helanova K, Litzman J, Tomandl J, Littnerova S, Sevcikova J, et al: Soluble ST2 levels in patients with cardiogenic and septic shock are not predictors of mortality. Exp Clin Cardiol. 17:205–209. 2012.PubMed/NCBI | |
Xu H, Turnquist HR, Hoffman R and Billiar TR: Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 4:32017.PubMed/NCBI | |
Matsuyama Y, Okazaki H, Tamemoto H, Kimura H, Kamata Y, Nagatani K, Nagashima T, Hayakawa M, Iwamoto M, Yoshio T, et al: Increased levels of interleukin-33 in sera and synovial fluid from patients with active rheumatoid arthritis. J Rheumatol. 37:18–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Gao X, Wang J, Xu L, Zheng Y and Xu Y: Interleukin-33 enhanced the migration and invasiveness of human lung cancer cells. OncoTargets Ther. 11:843–849. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun P, Ben Q, Tu S, Dong W, Qi X and Wu Y: Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci. 56:3596–3601. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu LA, Fu Y, Zhang DN and Zhang J: Serum IL-33 as a diagnostic and prognostic marker in non- small cell lung cancer. Asian Pac J Cancer Prev. 14:2563–2566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Shen JX, Hu JL, Huang WH and Zhang GJ: Significance of interleukin-33 and its related cytokines in patients with breast cancers. Front Immunol. 5:1412014. View Article : Google Scholar : PubMed/NCBI | |
Eissmann MF, Dijkstra C, Wouters MA, Baloyan D, Mouradov D, Nguyen PM, Davalos-Salas M, Putoczki TL, Sieber OM, Mariadason JM, et al: Interleukin-33 signaling restrains sporadic colon cancer in an interferon-γ-dependent manner. Cancer Immunol Res. 6:409–421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Casciaro M, Cardia R, Di Salvo E, Tuccari G, Ieni A and Gangemi S: Interleukin-33 involvement in nonsmall cell lung carcinomas: An update. Biomolecules. 9:E2032019. View Article : Google Scholar : PubMed/NCBI | |
Son J, Cho JW, Park HJ, Moon J, Park S, Lee H, Lee J, Kim G, Park SM, Lira SA, et al: Tumor-infiltrating regulatory T-cell accumulation in the tumor microenvironment is mediated by IL33/ST2 signaling. Cancer Immunol Res. 8:1393–1406. 2020.PubMed/NCBI | |
Carlock CI, Wu J, Zhou C, Tatum K, Adams HP, Tan F and Lou Y: Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol. 193:161–169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Carlock C, Zhou C, Nakae S, Hicks J, Adams HP and Lou Y: IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration. J Immunol. 194:2140–2147. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goff BA, Mandel L, Muntz HG and Melancon CH: Ovarian carcinoma diagnosis. Cancer. 89:2068–2075. 2000. View Article : Google Scholar : PubMed/NCBI | |
Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, Ngan HY, Pecorelli S and Beller U: Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 95 (Suppl 1):S161–S192. 2006. View Article : Google Scholar | |
Wang L, Hu J, Qiu D, Gao H, Zhao W, Huang Y, Jiang T, Zhou J and Chen Y: Dual-specificity phosphatase 5 suppresses ovarian cancer progression by inhibiting IL-33 signaling. Am J Transl Res. 11:844–854. 2019.PubMed/NCBI | |
Rushworth LK, Kidger AM, Delavaine L, Stewart G, van Schelven S, Davidson J, Bryant CJ, Caddye E, East P, Caunt CJ, et al: Dual-specificity phosphatase 5 regulates nuclear ERK activity and suppresses skin cancer by inhibiting mutant Harvey-Ras (HRasQ61L)-driven SerpinB2 expression. Proc Natl Acad Sci (USA). 111:18267–18272. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R and Ramchandran R: Dual specificity phosphatase 5-substrate interaction: A mechanistic perspective. Compr Physiol. 7:1449–1461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zheng H, Mu W, He Z, Yang B, Ji Y and Hui L: DUSP16 ablation arrests the cell cycle and induces cellular senescence. FEBS J. 282:4580–4594. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schmieder A, Multhoff G and Radons J: Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine. 60:514–521. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, Lu J, Qin W, Qi Y, Xie F, et al: Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 194:438–445. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perales-Puchalt A, Svoronos N, Villarreal DO, Zankharia U, Reuschel E, Wojtak K, Payne KK, Duperret EK, Muthumani K, Conejo-Garcia JR, et al: IL-33 delays metastatic peritoneal cancer progression inducing an allergic microenvironment. OncoImmunology. 8:e15150582018. View Article : Google Scholar : PubMed/NCBI | |
Melichar B and Freedman R S; Immunology of the peritoneal cavity, : Relevance for host-tumor relation. Int J Gynecol Canc. 12:3–17. 2012. View Article : Google Scholar : PubMed/NCBI |