Triple‑negative breast cancer: A run‑through of features, classification and current therapies (Review)
- Authors:
- Meghana Manjunath
- Bibha Choudhary
-
Affiliations: Department of Biotechnology, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka 560100, India - Published online on: May 5, 2021 https://doi.org/10.3892/ol.2021.12773
- Article Number: 512
-
Copyright : © Manjunath et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Hwang SY, Park S and Kwon Y: Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 199:30–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Feb 4–2021.(Epub ahead of print). doi: 10.3322/caac.21660. View Article : Google Scholar : PubMed/NCBI | |
Perue CM, Sorlie T, Elsen MB, van de Rijn M, Jeffrey S and Rees C: Molecular portraits of human breast tumors. Nature. 406:747–52. 2000. View Article : Google Scholar : PubMed/NCBI | |
Penault-Llorca F and Viale G: Pathological and molecular diagnosis of triple-negative breast cancer: A clinical perspective. Ann Oncol. 23:vi19–vi22. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yeh IT and Mies C: Application of immunohistochemistry to breast lesions. Arch Pathol Lab Med. 132:349–358. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fedele M, Cerchia L and Chiappetta G: The epithelial-to-mesenchymal transition in breast cancer: Focus on basal-like carcinomas. Cancers. 9:1342017. View Article : Google Scholar : PubMed/NCBI | |
Dias K, Dvorkin-Gheva A, Hallett RM, Wu Y, Hassell J, Pond GR, Levine M, Whelan T and Bane AL: Claudin-low breast cancer; clinical & pathological characteristics. PLoS One. 12:e01686692017. View Article : Google Scholar : PubMed/NCBI | |
Spigel DR and Burstein HJ: HER2 overexpressing metastatic breast cancer. Curr Treat Options Oncol. 3:163–174. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, et al: The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 7:962006. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Xu M, Sun Y, Chen J, Chen C, Qian C, Chen Y, Cao L, Xu Q, Du X and Yang W: Gene expression profiling for diagnosis of triple-negative breast cancer: A multicenter, retrospective cohort study. Front Oncol. 9:3542019. View Article : Google Scholar : PubMed/NCBI | |
Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, et al: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 365:1273–1283. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marotti JD, de Abreu FB, Wells WA and Tsongalis GJ: Triple-negative breast cancer: Next-generation sequencing for target identification. Am J Pathol. 187:2133–2138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reis-Filho JS and Tutt ANJ: Triple negative tumours: A critical review. Histopathology. 52:108–118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaplan HG, Malmgren JA and Atwood M: T1N0 triple negative breast cancer: Risk of recurrence and adjuvant chemotherapy. Breast J. 15:454–460. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang-Qing Y, Jie L, Shi-Qi Z, Kun Z, Zi-Qian G, Ran X, Hui-Meng L, Ren-Bin Z, Gang Z, Da-Chuan Y and Chen-Yan Z: Recent treatment progress of triple negative breast cancer. Prog Biophys Mol Biol. 151:40–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weigelt B and Reis-Filho JS: Histological and molecular types of breast cancer: Is there a unifying taxonomy? Nat Rev Clin Oncol. 6:7182009. View Article : Google Scholar : PubMed/NCBI | |
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malhotra GK, Zhao X, Band H and Band V: Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 10:955–960. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balkenhol MC, Vreuls W, Wauters CA, Mol SJ, van der Laak JA and Bult P: Histological subtypes in triple negative breast cancer are associated with specific information on survival. Ann Diagn Pathol. 46:1514902020. View Article : Google Scholar : PubMed/NCBI | |
Romero P, Benhamo V, Deniziaut G, Fuhrmann L, Berger F, Manié E, Bhalshankar J, Vacher S, Laurent C, Marangoni E, et al: Medullary breast carcinoma, a triple-negative breast cancer associated with BCLG overexpression. Am J Pathol. 188:2378–2391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huober J, Gelber S, Thurlimann B, Goldhirsch A, Coates AS, Viale G, Öhlschlegel C, Price KN, Gelber RD, Regan MM and Thürlimann B: Prognosis of medullary breast cancer: Analyses of 13 International Breast Cancer Study Group (IBCSG) trials. Ann Oncol. 23:2843–2851. 2012. View Article : Google Scholar : PubMed/NCBI | |
Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, Savage K, Mackay A, Ashworth A and Reis-Filho JS: Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 220:562–573. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, et al: Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 69:4116–4124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hayes MJ, Thomas D, Emmons A, Giordano TJ and Kleer CG: Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 14:4038–4044. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thomas DN, Asarian A and Xiao P: Adenoid cystic carcinoma of the breast. J Surg Case Rep. 2019:rjy3552019. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa K, Mizukami Y, Takayama T, Takemura A, Miyati T and Taniya T: A case of adenoid cystic carcinoma of the breast. J Med Ultrasonics. 34:193–196. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun JY, Wu SG, Chen SY, Li FY, Lin HX, Chen YX and He ZY: Adjuvant radiation therapy and survival for adenoid cystic carcinoma of the breast. Breast. 31:214–218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aktepe F, Sarsenov D and Özmen V: Secretory carcinoma of the breast. J Breast Health. 12:1742016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wu N, Li F, Li L, Wei L and Liu J: Clinicopathologic and molecular characteristics of 44 patients with pure secretory breast carcinoma. Cancer Biol Med. 16:1392019. View Article : Google Scholar : PubMed/NCBI | |
Pareja F, Geyer FC, Marchiò C, Burke KA, Weigelt B and Reis-Filho JS: Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2:160362016. View Article : Google Scholar : PubMed/NCBI | |
Kuroda H, Sakamoto G, Ohnisi K and Itoyama S: Clinical and pathological features of glycogen-rich clear cell carcinoma of the breast. Breast Cancer. 12:189–195. 2005. View Article : Google Scholar : PubMed/NCBI | |
Geyer FC, Pareja F, Weigelt B, Rakha E, Ellis IO, Schnitt SJ and Reis-Filho JS: The spectrum of triple-negative breast disease: High-and low-grade lesions. Am J Pathol. 187:2139–2151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Degnim AC, Brahmbhatt RD, Radisky DC, Hoskin TL, Stallings-Mann M, Laudenschlager M, Mansfield A, Frost MH, Murphy L, Knutson K and Visscher DW: Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res Treat. 144:539–549. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E and Syrjänen K: Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 28:859–864. 1992. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto H, Koo S, Dent R, Tan PH and Iqbal J: Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol. 68:506–510. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C and Kroemer G: Prognostic and predictive impact of intra-and peritumoral immune infiltrates. Cancer Res. 71:5601–5605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karn T, Jiang T, Hatzis C, Sänger N, El-Balat A, Holtrich U, Becker S, Bianchini G and Pusztai L: Abstract S1-07: Immune sculpting of the triple negative breast cancer genome. Cancer Res. 772017.doi: 10.1158/1538-7445.SABCS16-S1-07. | |
Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C, Torrisi R, Reis-Filho JS, Roncalli M, Sotiriou C, Santoro A, et al: An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res. 18:1212016. View Article : Google Scholar : PubMed/NCBI | |
Gruosso T, Gigoux M, Bertos N, Manem VSK, Guiot MC, Buisseret L, Salgado R, Van den Eyden G, Haibe-Kains B and Park M: Distinct immune microenvironments stratify triple-negative breast cancer and predict outcome. Ann Oncol. 28:i162017. View Article : Google Scholar | |
Abramson VG, Lehmann BD, Ballinger TJ and Pietenpol JA: Subtyping of triple-negative breast cancer: Implications for therapy. Cancer. 121:8–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD and Pietenpol JA: Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 232:142–150. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, et al: Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 21:1688–1698. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahn SG, Kim SJ, Kim C and Jeong J: Molecular classification of triple-negative breast cancer. J Breast Cancer. 19:223–230. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu YR, Jiang YZ, Xu XE, Yu KD, Jin X, Hu X, Zuo WJ, Hao S, Wu J, Liu GY, et al: Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 18:332016. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Duan JJ, Bian XW and Yu S: Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22:612020. View Article : Google Scholar : PubMed/NCBI | |
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Venkitaraman AR: Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Ann Rev Pathol. 4:461–487. 2009. View Article : Google Scholar : PubMed/NCBI | |
Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN and Arun BK: Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 26:4282–4288. 2008. View Article : Google Scholar : PubMed/NCBI | |
Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, Trudel M and Akslen LA: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 95:1482–1485. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. Am J Hum Genet. 72:1117–1130. 2003. View Article : Google Scholar : PubMed/NCBI | |
Turner N, Tutt A and Ashworth A: Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 4:814–819. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: BRCAness revisited. Nat Rev Cancer. 16:110–120. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bertucci F, Ng CK, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani Y, Kamal M, et al: Genomic characterization of metastatic breast cancers. Nature. 569:560–564. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, Xiao Y, Yu KD, Liu YR, Yu Y, et al: Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies. Cancer Cell. 35:428–440.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al: Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 534:47–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Sheng M, Zheng L, Xiong D, Yang K and Luo Y: Application of circulating tumor DNA in breast cancer. Breast J. 26:1797–1800. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lustberg MB, Stover DG and Chalmers JJ: Implementing liquid biopsies in clinical trials: State of affairs, opportunities and challenges. Cancer J. 24:61–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thompson AM and Moulder-Thompson SL: Neoadjuvant treatment of breast cancer. Ann Oncol. 23 (Suppl 10):x231–x236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stover DG, Parsons HA, Ha G, Freeman SS, Barry WT, Guo H, Choudhury AD, Gydush G, Reed SC, Rhoades J, et al: Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer. J Clin Oncol. 36:543–553. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, et al: Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data. Lancet Oncol. 15:406–414. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cristofanilli M, Pierga JY, Reuben J, Rademaker A, Davis AA, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al: The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol. 134:39–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
Riva F, Bidard FC, Houy A, Saliou A, Madic J, Rampanou A, Hego C, Milder M, Cottu P, Sablin MP, et al: Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 63:691–699. 2017. View Article : Google Scholar : PubMed/NCBI | |
Radovich M, Jiang G, Chitambar C, Nanda R, Falkson C, Lynce FC, Gallagher C, Isaacs C, Blaya M, Paplomata E, et al: Abstract GS5-02: Detection of circulating tumor DNA (ctDNA) after neoadjuvant chemotherapy is significantly associated with disease recurrence in early-stage triple-negative breast cancer (TNBC): Preplanned correlative results from clinical trial BRE12-158. Cancer Res. 802020.doi: 10.1158/1538-7445.SABCS19-GS5-02. | |
Becker S: A historic and scientific review of breast cancer: The next global healthcare challenge. Int J Gynecol Obstet. 131 (Suppl 1):S36–S39. 2015. View Article : Google Scholar : PubMed/NCBI | |
Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE Jr, Jacobs SA, Robert NJ, Hopkins JO, O'Shaughnessy JA, Dang CT, et al: Anthracyclines in early breast cancer: The ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 35:2647–2655. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mansel RE, Fodstad O and Jiang WG: Metastasis of breast cancer. Springer; 2007, View Article : Google Scholar | |
Mosca L, Ilari A, Fazi F, Assaraf YG and Colotti G: Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat. 54:1007422021. View Article : Google Scholar : PubMed/NCBI | |
Bachegowda LS, Makower DF and Sparano JA: Taxanes: Impact on breast cancer therapy. Anticancer Drugs. 25:512–521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, et al: Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet. 384:164–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, et al: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 30:1796–1804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Ahn JH and Kim SB: How shall we treat early triple-negative breast cancer (TNBC): From the current standard to upcoming immuno-molecular strategies. ESMO Open. 3:e0003572018. View Article : Google Scholar : PubMed/NCBI | |
Greene J and Hennessy B: The role of anthracyclines in the treatment of early breast cancer. J Oncol Pharm Pract. 21:201–212. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Jeung HC, Rha SY, Ahn JB, Kang B, Chon HJ, Hong MH, Lim S, Yang WI, Nam CM and Chung HC: Phase II gemcitabine and capecitabine combination therapy in recurrent or metastatic breast cancer patients pretreated with anthracycline and taxane. Cancer Chemother Pharmacol. 74:799–808. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karachaliou N, Ziras N, Syrigos K, Tryfonidis K, Papadimitraki E, Kontopodis E, Bozionelou V, Kalykaki A, Georgoulias V and Mavroudis D: A multicenter phase II trial of docetaxel and capecitabine as salvage treatment in anthracycline-and taxane-pretreated patients with metastatic breast cancer. Cancer Chemother Pharmacol. 70:169–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anton A, Lluch A, Casado A, Provencio M, Muñoz M, Lao J, Bermejo B, Paules AB, Gayo J and Martin M: Phase I study of oral vinorelbine and capecitabine in patients with metastatic breast cancer. Anticancer Res. 30:2255–2261. 2010.PubMed/NCBI | |
Kennedy RD, Quinn JE, Mullan PB, Johnston PG and Harkin DP: The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 96:1659–1668. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Liu Q, Chen S and Shao Z: Cisplatin versus carboplatin in combination with paclitaxel as neoadjuvant regimen for triple negative breast cancer. Onco Targets Ther. 10:5739–5744. 2017. View Article : Google Scholar : PubMed/NCBI | |
Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE, et al: TBCRC009: A multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 33:1902–1909. 2015. View Article : Google Scholar : PubMed/NCBI | |
Byrski T, Dent R, Blecharz P, Foszczynska-Kloda M, Gronwald J, Huzarski T, Cybulski C, Marczyk E, Chrzan R, Eisen A, et al: Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res. 14:R1102012. View Article : Google Scholar : PubMed/NCBI | |
Isakoff SJ: Triple negative breast cancer: Role of specific chemotherapy agents. Cancer J. 16:53–61. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim GM, Jeung HC, Jung KH, Kim HJ, Lee KH, Park KH, Lee JE, Anh MS, Kohn S, Lee SS, et al: PEARLY: A randomized, multicenter, open-label, phase III trial comparing anthracyclines followed by taxane versus anthracyclines followed by taxane plus carboplatin as (neo) adjuvant therapy in patients with early triple-negative breast cancer. J Clin Oncol. 35 (15_suppl):TPS587. 2017. View Article : Google Scholar | |
Chen XS, Nie XQ, Chen CM, Wu JY, Wu J, Lu JS, Shao ZM, Shen ZZ and Shen KW: Weekly paclitaxel plus carboplatin is an effective nonanthracycline-containing regimen as neoadjuvant chemotherapy for breast cancer. Ann Oncol. 21:961–967. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sawyers C: Targeted cancer therapy. Nature. 432:294–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dancey JE and Chen HX: Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Dis. 5:649–659. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jhan JR and Andrechek ER: Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics. 18:1595–1609. 2017. View Article : Google Scholar : PubMed/NCBI | |
Audebert M, Salles B and Calsou P: Involvement of poly (ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem. 279:55117–55126. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shall S and de Murcia G: Poly(ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat Res. 460:1–15. 2000. View Article : Google Scholar : PubMed/NCBI | |
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Turner N, Tutt A and Ashworth A: Targeting the DNA repair defect of BRCA tumours. Curr Opin Pharmacol. 5:388–393. 2005. View Article : Google Scholar : PubMed/NCBI | |
Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN and Ashworth A: A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27:1368–1377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, et al: Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst. 96:56–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robson ME, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung NM, Armstrong A, et al: OlympiAD: Phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). J Clin Oncol. 352017.PubMed/NCBI | |
Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, Masuda N, Delaloge S, Li W, Armstrong A, et al: OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 30:558–566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al: Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 379:753–763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Poggio F, Bruzzone M, Ceppi M, Conte B, Martel S, Maurer C, Tagliamento M, Viglietti G, Del Mastro L, de Azambuja E and Lambertini M: Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: A systematic review and meta-analysis. ESMO Open. 3:e0003612018. View Article : Google Scholar : PubMed/NCBI | |
Miller K, Tong Y, Jones DR, Walsh T, Danso MA and Ma CX; MCSSSM, : Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer: Final efficacy results of Hoosier Oncology Group BRE09-146. J Clin Oncol. 33:10822015. View Article : Google Scholar | |
Isakoff SJ, Puhalla S, Domchek SM, Friedlander M, Kaufman B, Robson M, Telli ML, Diéras V, Han HS, Garber JE, et al: A randomized phase II study of veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in BRCA1/2 metastatic breast cancer: Design and rationale. Future Oncol. 13:307–320. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zimmer AS, Gillard M, Lipkowitz S and Lee JM: Update on PARP inhibitors in breast cancer. Curr Treat Options Oncol. 19:212018. View Article : Google Scholar : PubMed/NCBI | |
Rugo HS, Olopade OI, DeMichele A, Yau C, van't Veer LJ, Buxton MB, Hogarth M, Hylton NM, Paoloni M, Perlmutter J, et al: Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med. 375:23–34. 2016. View Article : Google Scholar : PubMed/NCBI | |
Domchek SM, Postel-Vinay S, Im SA, Hee Park Y, Delord JP, Italiano A, Alexandre J, You B, Bastian S, Krebs MG, et al: Abstract PD5-04: An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): Updated results in patients with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Cancer Res. 792019.doi: 10.1158/1538-7445.SABCS18-PD5-04. | |
Tutt A, Kaufman B, Gelber RD, McFadden E, Goessl C, Viale G, Geyer G, Zardavas D, Arahmani A, Fumagalli D, et al: OlympiA: A randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). Ann Oncol. 28:V672017. View Article : Google Scholar | |
Earl HM, Vallier AL, Qian W, Grybowicz L, Thomas S, Mahmud S, Harvey C, McAdam K, Hughes-Davies L, Roylance R, et al: PARTNER: Randomised, phase II/III trial to evaluate the safety and efficacy of the addition of olaparib to platinum-based neoadjuvant chemotherapy in triple negative and/or germline BRCA mutated breast cancer patients. J Clin Oncol. 35:TPS5912017. View Article : Google Scholar | |
Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Delaloge S and DeForceville L: Targeting PI3K/AKT pathway in triple-negative breast cancer. Lancet Oncol. 18:1293–1294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, immunity, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim SB, Dent R, Im SA, Espié M, Blau S, Tan AR, Isakoff SJ, Oliveira M, Saura C, Wongchenko MJ, et al: Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 18:1360–1372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martín M, Chan A, Dirix L, O'Shaughnessy J, Hegg R, Manikhas A, Shtivelband M, Krivorotko P, Batista López N, Campone M, et al: A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2-advanced breast cancer (BELLE-4). Ann Oncol. 28:313–320. 2017. View Article : Google Scholar | |
Schmid P, Cortes J, Robson ME, Iwata H, Hegg R, Nechaeva M, Xu B, Verma S, Haddad V, Imedio R, et al: A phase III trial of capivasertib and paclitaxel in first-line treatment of patients with metastatic triple-negative breast cancer (CAPItello290). J Clin Oncol. 38:TPS11092020. View Article : Google Scholar | |
Schmid P, Abraham J, Chan S, Wheatley D, Brunt M, Nemsadze G, Baird R, Park YH, Hall P, Perren T, et al: AZD5363 plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (PAKT): A randomised, double-blind, placebo-controlled, phase II trial. J Clin Oncol. 36:10072018. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Angulo AM, Green MC, Murray JL, Palla SL, Koenig KH, Valero Brewster NK; SLJKDJ, ; et al: Open label, randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC (T-FEC) versus the combination of paclitaxel and RAD001 followed by FEC (TR-FEC) in women with triple receptor-negative breast cancer (TNBC). J Clin Oncol. 29:10162011. View Article : Google Scholar | |
Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, Hess KR, Herbrich SM, Valero V, Albarracin C, et al: Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 3:509–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Jae E and Yoon M: Influence of androgen receptor expression on the survival outcomes in breast cancer: A meta-analysis. J Breast Cancer. 18:134–142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell K, Rugo H, Nabell L, Forero A, et al: Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 19:5505–5512. 2013. View Article : Google Scholar : PubMed/NCBI | |
Traina TA, Miller K, Yardley DA, Eakle J, Schwartzberg LS, O'Shaughnessy J, Gradishar W, Schmid P, Winer E, Kelly C, et al: Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol. 36:884–890. 2018. View Article : Google Scholar : PubMed/NCBI | |
Traina TA, Miller K, Yardley DA, O'Shaughnessy J, Cortes J, Kelly AACM, Trudeau ME, Schmid P, Gianni L, García-Estevez A, et al: Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol. 33:10032015. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, Chen X, Balko JM, Gómez H, Arteaga CL, et al: PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 16:4062014. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, Van Poznak C, Storniolo AM, Nangia JR, Gonzalez-Ericsson PI, et al: TBCRC 032 IB/II multicenter study: Molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer. Clin Cancer Res. 26:2111–2123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Panowski S, Bhakta S, Raab H, Polakis P and Junutula JR: Site-specific antibody drug conjugates for cancer therapy. MAbs. 6:34–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R and Zarnani AH: Antibody-drug conjugates: Possibilities and challenges. Avicenna J Med Biotechnol. 11:3–23. 2019.PubMed/NCBI | |
Goldenberg DM, Stein R and Sharkey RM: The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 9:28989–29006. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD, Abramson VG, et al: Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 380:741–751. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lian W, Zhao X, Diao Y, Xu J, Xiao L, Qing Y, Xue T and Wang J: SKB264 ADC: A first-in-human study of SKB264 in patients with locally advanced unresectable/metastatic solid tumors who are refractory to available standard therapies. J Clin Oncol. 38((15_suppl)): TPS36592020. View Article : Google Scholar : PubMed/NCBI | |
Lyons TG: Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 20:822019. View Article : Google Scholar : PubMed/NCBI | |
Giltnane JM and Balko JM: Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Dis Med. 17:275–283. 2014.PubMed/NCBI | |
Romanelli A, Clark A, Assayag F, Chateau-Joubert S, Poupon MF, Servely JL, Fontaine JJ, Liu X, Spooner E, Goodstal S, et al: Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther. 11:2693–2703. 2012. View Article : Google Scholar : PubMed/NCBI | |
Finn RS: Östrogenrezeptor-positiver Brustkrebs: Erfolgreiche Palbociblib-Letrozol-Kombination. Breast Cancer. 375:1925–1936. 2016.PubMed/NCBI | |
Lucantoni F, Lindner AU, O'Donovan N, Düssmann H and Prehn JH: Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis. 9:422018. View Article : Google Scholar : PubMed/NCBI | |
Inao T, Iida Y, Moritani T, Okimoto T, Tanino R, Kotani H and Harada M: Bcl-2 inhibition sensitizes triple-negative human breast cancer cells to doxorubicin. Oncotarget. 9:25545–25556. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marra A, Viale G and Curigliano G: Recent advances in triple negative breast cancer: The immunotherapy era. BMC Med. 17:902019. View Article : Google Scholar : PubMed/NCBI | |
Weber S, Traunecker A, Oliveri F, Gerhard W and Karjalainen K: Specific low-affinity recognition of major histocompatibility complex plus peptide by soluble T-cell receptor. Nature. 356:793–796. 1992. View Article : Google Scholar : PubMed/NCBI | |
Peggs KS, Quezada SA and Allison JP: Cancer immunotherapy: Co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol. 157:9–19. 2009. View Article : Google Scholar : PubMed/NCBI | |
Planes-Laine G, Rochigneux P, Bertucci F, Chrétien A-S, Viens P, Sabatier R and Gonçalves A: PD-1/PD-L1 targeting in breast cancer: The first clinical evidences are emerging. A literature review. Cancers (Basel). 11:10332019. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM, Rennert PD and Freeman GJ: Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Dis. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI | |
Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D and Bertucci F: Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 6:5449–5464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2:361–370. 2014. View Article : Google Scholar : PubMed/NCBI | |
Patel SP and Kurzrock R: PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schmidt M, Böhm D, Von Törne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kölbl H and Gehrmann M: The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 68:5405–5413. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aguiar PN Jr, Santoro IL, Tadokoro H, de Lima Lopes G, Filardi BA, Oliveira P, Mountzios G and de Mello RA: The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: A network meta-analysis. Immunotherapy. 8:479–488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, et al: Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 69:25–34. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vagia E, Mahalingam D and Cristofanilli M: The landscape of targeted therapies in TNBC. Cancers (Basel. 12:9162020. View Article : Google Scholar : PubMed/NCBI | |
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Henschel V, Molinero L, Chui SY, et al: IMpassion130: Updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo)+ nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 37 (Suppl 15):S10032019. View Article : Google Scholar | |
Cortés J, Lipatov O, Im SA, Gonçalves A, Lee KS, Schmid P, Tamura K, Testa L, Witzel I, Ohtani S, et al: LBA21 KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann Oncol. 30:v859–v860. 2019. View Article : Google Scholar | |
Cortes J, Guo Z, Karantza V and Aktan G: Abstract CT069: KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab plus chemotherapy vs placebo plus chemotherapy for previously untreated, locally recurrent, inoperable or metastatic triple-negative breast cancer (mTNBC). Cancer Res. 772017.doi: 10.1158/1538-7445.AM2017-CT069. | |
Schmid P, Salgado R, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, Im SA, Foukakis T, Kuemmel S, Dent R, et al: Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: Results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. 31:569–581. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA and Esserman LJ: I-SPY 2: An adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 86:97–100. 2009. View Article : Google Scholar : PubMed/NCBI | |
Keenan TE and Tolaney SM: Role of immunotherapy in Triple-negative breast cancer. J Natl Compr Canc Netw. 18:479–489. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qattan A: Novel miRNA targets and therapies in the triple-negative breast cancer microenvironment: An emerging Hope for a challenging disease. Int J Mol Sci. 21:89052020. View Article : Google Scholar : PubMed/NCBI | |
Si W, Shen J, Zheng H and Fan W: The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar : PubMed/NCBI | |
Lyng MB, Lænkholm AV, Søkilde R, Gravgaard KH, Litman T and Ditzel HJ: Global microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant tamoxifen mono-therapy: A DBCG study. PLoS One. 7:e361702012. View Article : Google Scholar : PubMed/NCBI | |
Gorur A, Bayraktar R, Ivan C, Mokhlis HA, Bayraktar E, Kahraman N, Karakas D, Karamil S, Kabil NN, Kanlikilicer P, et al: ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Mol Ther Nucleic Acids. 23:930–943. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, Li Y, Tang SC, Qin S, Du N, et al: MYC and DNMT 3A-mediated DNA methylation represses micro RNA-200b in triple negative breast cancer. J Cell Mol Med. 22:6262–6274. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al: miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tormo E, Ballester S, Adam-Artigues A, Burgués O, Alonso E, Bermejo B, Menéndez S, Zazo S, Madoz-Gúrpide J, Rovira A, et al: The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci Rep. 9:53162019. View Article : Google Scholar : PubMed/NCBI | |
Naorem LD, Muthaiyan M and Venkatesan A: Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. J Cell Physiol. 234:11768–11779. 2019. View Article : Google Scholar : PubMed/NCBI | |
Malla RR, Kumari S, Gavara MM, Badana AK, Gugalavath S, Kumar DKG and Rokkam P: A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophys Rev. 11:227–234. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cai Q, Bao PP, Su Y, Cai H, Wu J, Ye F, Guo X, Zheng W, Zheng Y and Shu XO: Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. Breast Cancer Res Treat. 152:183–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kahraman M, Röske A, Laufer T, Fehlmann T, Backes C, Kern F, Kohlhaas J, Schrörs H, Saiz A, Zabler C, et al: MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 8:115842018. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y and Liu C: Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. 53:e128012020. View Article : Google Scholar : PubMed/NCBI | |
Shu D, Li H, Shu Y, Xiong G, Carson WE III, Haque F, Xu R and Guo P: Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano. 9:9731–9740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P and Shu D: Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther. 27:1252–1261. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, et al: The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 18:213–224. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Meng X, Yu Y, Pan L, Zheng Q and Lin W: LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci Biotechnol Biochem. 83:1117–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Zhou Y, Sun AJ and Xue JL: NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol. 233:8558–8566. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, Su X, Peng L and Jiao B: NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Biol. 10 (Suppl 1):S11–S17. 2016.PubMed/NCBI | |
Wang LI, Liu D, Wu X, Zeng Y, Li L, Hou Y, Li W and Liu Z: Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): Expression analysis and biological roles research. J Cell Physiol. 233:6603–6612. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Deng F, Qin Y, Zhao Z, Wu Z, Xing Z, Ji A and Wang QJ: Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death Dis. 7:e22542016. View Article : Google Scholar : PubMed/NCBI | |
Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S, et al: Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 30:907–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sha S, Yuan D, Liu Y, Han B and Zhong N: Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open. 6:1310–1316. 2017. View Article : Google Scholar : PubMed/NCBI |