Cell fusion in cancer hallmarks: Current research status and future indications (Review)
- Authors:
- Hao-Fei Wang
- Wei Xiang
- Bing-Zhou Xue
- Yi-Hao Wang
- Dong-Ye Yi
- Xiao-Bing Jiang
- Hong-Yang Zhao
- Peng Fu
-
Affiliations: Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: May 16, 2021 https://doi.org/10.3892/ol.2021.12791
- Article Number: 530
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Brukman NG, Uygur B, Podbilewicz B and Chernomordik LV: How cells fuse. J Cell Biol. 218:1436–1451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oren-Suissa M and Podbilewicz B: Cell fusion during development. Trends Cell Biol. 17:537–546. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bastida-Ruiz D, Van Hoesen K and Cohen M: The dark side of cell fusion. Int J Mol Sci. 17:6382016. View Article : Google Scholar : PubMed/NCBI | |
Ku JWK, Chen Y, Lim BJW, Gasser S, Crasta KC and Gan YH: Bacterial-induced cell fusion is a danger signal triggering cGAS-STING pathway via micronuclei formation. Proc Natl Acad Sci USA. 117:15923–15934. 2020. View Article : Google Scholar : PubMed/NCBI | |
Laberge GS, Duvall E, Haedicke K and Pawelek J: Leukocyte-cancer cell fusion-genesis of a deadly journey. Cells. 8:1702019. View Article : Google Scholar : PubMed/NCBI | |
Willkomm L and Bloch W: State of the art in cell-cell fusion. Methods Mol Biol. 1313:1–19. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zito F, Lampiasi N, Kireev I and Russo R: United we stand: Adhesion and molecular mechanisms driving cell fusion across species. Eur J Cell Biol. 95:552–562. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hernández JM and Podbilewicz B: The hallmarks of cell-cell fusion. Development. 144:4481–4495. 2017. View Article : Google Scholar | |
Raj I, Sadat Al Hosseini H, Dioguardi E, Nishimura K, Han L, Villa A, de Sanctis D and Jovine L: Structural basis of egg coat-sperm recognition at fertilization. Cell. 169:1315–1326.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Augustine GJ and Weninger K: Kinetics of complexin binding to the SNARE complex: Correcting single molecule FRET measurements for hidden events. Biophys J. 93:2178–2187. 2007. View Article : Google Scholar : PubMed/NCBI | |
Donaldson SH Jr, Lee CT Jr, Chmelka BF and Israelachvili JN: General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers. Proc Natl Acad Sci USA. 108:15699–15704. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chernomordik LV, Kozlov MM, Leĭkin SL, Markin VS and Chizmadzhaev IuA: Membrane fusion: Local interactions and structural rearrangements. Dokl Akad Nauk SSSR. 288:1009–1013. 1986.(In Russian). PubMed/NCBI | |
Chernomordik LV and Kozlov MM: Membrane hemifusion: Crossing a chasm in two leaps. Cell. 123:375–382. 2005. View Article : Google Scholar : PubMed/NCBI | |
Skehel JJ and Wiley DC: Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem. 69:531–569. 2000. View Article : Google Scholar : PubMed/NCBI | |
Eckert DM and Kim PS: Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 70:777–810. 2001. View Article : Google Scholar : PubMed/NCBI | |
Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH and Rothman JE: SNAREpins: Minimal machinery for membrane fusion. Cell. 92:759–772. 1998. View Article : Google Scholar : PubMed/NCBI | |
Calder LJ and Rosenthal PB: Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat Struct Mol Biol. 23:853–858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Segev N, Avinoam O and Podbilewicz B: Fusogens. Curr Biol. 28:R378–R380. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mercapide J, Rappa G and Lorico A: The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. Int J Cancer. 131:334–343. 2012. View Article : Google Scholar : PubMed/NCBI | |
Esnault C, Priet S, Ribet D, Vernochet C, Bruls T, Lavialle C, Weissenbach J and Heidmann T: A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA. 105:17532–17537. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W, Tortorici MA, Traincard F, Meola A, Bricogne G, Grishin NV, et al: The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell. 168:904–915.e10. 2017. View Article : Google Scholar | |
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H and Wong M: Genetic basis of cell-cell fusion mechanisms. Trends Genet. 29:427–437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okabe M: Sperm-egg interaction and fertilization: Past, present, and future. Biol Reprod. 99:134–146. 2018. View Article : Google Scholar : PubMed/NCBI | |
Primakoff P and Myles DG: Cell-cell membrane fusion during mammalian fertilization. FEBS Lett. 581:2174–2180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P and Myles DG: Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol. 304:317–325. 2007. View Article : Google Scholar : PubMed/NCBI | |
Aydin H, Sultana A, Li S, Thavalingam A and Lee JE: Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature. 534:562–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ohto U, Ishida H, Krayukhina E, Uchiyama S, Inoue N and Shimizu T: Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization. Nature. 534:566–569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, et al: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 403:785–789. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gude NM, Roberts CT, Kalionis B and King RG: Growth and function of the normal human placenta. Thromb Res. 114:397–407. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bjerregaard B, Holck S, Christensen IJ and Larsson LI: Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci. 63:1906–1911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bjerregard B, Ziomkiewicz I, Schulz A and Larsson LI: Syncytin-1 in differentiating human myoblasts: Relationship to caveolin-3 and myogenin. Cell Tissue Res. 357:355–362. 2014. View Article : Google Scholar : PubMed/NCBI | |
Søe K, Andersen TL, Hobolt-Pedersen AS, Bjerregaard B, Larsson LI and Delaisse JM: Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone. 48:837–846. 2011. View Article : Google Scholar | |
Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K and Power C: Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 7:1088–1095. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P and Heidmann T: Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci USA. 106:12127–12132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vignery A: Macrophage fusion: The making of osteoclasts and giant cells. J Exp Med. 202:337–340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Helming L and Gordon S: Molecular mediators of macrophage fusion. Trends Cell Biol. 19:514–522. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saginario C, Sterling H, Beckers C, Kobayashi R, Solimena M, Ullu E and Vignery A: MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol. 18:6213–6223. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kania JR, KehatStadler T and Kupfer SR: CD44 antibodies inhibit osteoclast formation. J Bone Miner Res. 12:1155–1164. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yagi M, Miyamoto T, Toyama Y and Suda T: Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J Bone Miner Metab. 24:355–358. 2006. View Article : Google Scholar : PubMed/NCBI | |
Horsley V and Pavlath GK: Forming a multinucleated cell: Molecules that regulate myoblast fusion. Cells Tissues Organs. 176:67–78. 2004. View Article : Google Scholar : PubMed/NCBI | |
Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V and Millay DP: Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 8:156652017. View Article : Google Scholar : PubMed/NCBI | |
Mitani Y, Vagnozzi RJ and Millay DP: In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. FASEB J. 31:400–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boveri T: Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 121 (Suppl 1):S1–S84. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Zhao D, Dai X, Chen J, Rong X, Wang H, Wang A, Li M, Dong J, Huang Q and Lan Q: Fusion of cancer stem cells and mesenchymal stem cells contributes to glioma neovascularization. Oncol Rep. 34:2022–2030. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei HJ, Nickoloff JA, Chen WH, Liu HY, Lo WC, Chang YT, Yang PC, Wu CW, Williams DF, Gelovani JG and Deng WP: FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget. 5:9514–9529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Melzer C, von der Ohe J and Hass R: In vitro fusion of normal and neoplastic breast epithelial cells with human mesenchymal stroma/stem cells partially involves tumor necrosis factor receptor signaling. Stem Cells. 36:977–989. 2018. View Article : Google Scholar : PubMed/NCBI | |
Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI and Abraham T: Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One. 10:e01343202015. View Article : Google Scholar : PubMed/NCBI | |
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, Parappilly MS, Roh-Johnson M, Goodman JR, Olson B, et al: Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 4:eaat78282018. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Guo W, Zhao S, Wang F and Xu Y: Fusion between cancer cells and myofibroblasts is involved in osteosarcoma. Oncol Lett. 2:1083–1087. 2011. View Article : Google Scholar : PubMed/NCBI | |
Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S and Wong MH: Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 71:1497–1505. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang CM, Yan TL, Xu Z, Wang M, Zhou XC, Jiang EH, Liu K, Shao Z and Shang ZJ: Hypoxia enhances fusion of oral squamous carcinoma cells and epithelial cells partly via the epithelial-mesenchymal transition of epithelial cells. Biomed Res Int. 2018:50152032018. View Article : Google Scholar : PubMed/NCBI | |
Lu X and Kang Y: Cell fusion as a hidden force in tumor progression. Cancer Res. 69:8536–8539. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Hu P, Shi X, Qian W, Zhau HE, Pandol SJ, Lewis MS, Chung LWK and Wang R: Cancer cell's neuroendocrine feature can be acquired through cell-cell fusion during cancer-neural stem cell interaction. Sci Rep. 10:12162020. View Article : Google Scholar : PubMed/NCBI | |
Dörnen J, Myklebost O and Dittmar T: Cell fusion of mesenchymal stem/stromal cells and breast cancer cells leads to the formation of hybrid cells exhibiting diverse and individual (stem cell) characteristics. Int J Mol Sci. 21:96362020. View Article : Google Scholar | |
Delespaul L, Merle C, Lesluyes T, Lagarde P, Le Guellec S, Pérot G, Baud J, Carlotti M, Danet C, Fèvre M, et al: Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene. 38:6083–6094. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hedley DW, Leary JA and Kirsten F: Metastatic adenocarcinoma of unknown primary site: Abnormalities of cellular DNA content and survival. Eur J Cancer Clin Oncol. 21:185–189. 1985. View Article : Google Scholar : PubMed/NCBI | |
Baker SG: A cancer theory kerfuffle can lead to new lines of research. J Natl Cancer Inst. 107:dju4052014. View Article : Google Scholar : PubMed/NCBI | |
Mertens F, Johansson B, Höglund M and Mitelman F: Chromosomal imbalance maps of malignant solid tumors: A cytogenetic survey of 3185 neoplasms. Cancer Res. 57:2765–2780. 1997.PubMed/NCBI | |
Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J and Terzis AJ: Opinion: The origin of the cancer stem cell: Current controversies and new insights. Nat Rev Cancer. 5:899–904. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mohr M, Zaenker KS and Dittmar T: Fusion in cancer: An explanatory model for aneuploidy, metastasis formation, and drug resistance. Methods Mol Biol. 1313:21–40. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Merchak K, Lee W, Grande JP, Cascalho M and Platt JL: Cell fusion connects oncogenesis with tumor evolution. Am J Pathol. 185:2049–2060. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S, Brandt BH, Niggemann B and Zänker KS: Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastas. 28:75–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goldenberg DM, Rooney RJ, Loo M, Liu D and Chang CH: In-vivo fusion of human cancer and hamster stromal cells permanently transduces and transcribes human DNA. PLoS One. 9:e1079272014. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Subedee A, Bloushtain-Qimron N, Savova V, Krzystanek M, Li L, Marusyk A, Tabassum DP, Zak A, Flacker MJ, et al: Somatic cell fusions reveal extensive heterogeneity in basal-like breast cancer. Cell Rep. 11:1549–1563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Munzarova M, Lauerova L and Capkova J: Are advanced malignant melanoma cells hybrids between melanocytes and macrophages? Melanoma Res. 2:127–129. 1992. View Article : Google Scholar : PubMed/NCBI | |
He X, Li B, Shao Y, Zhao N, Hsu Y, Zhang Z and Zhu L: Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation. BMC Cancer. 15:242015. View Article : Google Scholar : PubMed/NCBI | |
Faggioli F, Sacco MG, Susani L, Montagna C and Vezzoni P: Cell fusion is a physiological process in mouse liver. Hepatology. 48:1655–1664. 2008. View Article : Google Scholar : PubMed/NCBI | |
Israel BA and Schaeffer WI: Cytoplasmic suppression of malignancy. In Vitro Cell Dev Biol. 23:627–632. 1987. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN: Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol. 3:432015. View Article : Google Scholar : PubMed/NCBI | |
Hsu CC, Tseng LM and Lee HC: Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood). 241:1281–1295. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN and Shelton LM: Cancer as a metabolic disease. Nutr Metab (Lond). 7:72010. View Article : Google Scholar : PubMed/NCBI | |
Platt JL, Zhou X, Lefferts AR and Cascalho M: Cell fusion in the war on cancer: A perspective on the inception of malignancy. Int J Mol Sci. 17:11182016. View Article : Google Scholar : PubMed/NCBI | |
Duelli D and Lazebnik Y: Cell fusion: A hidden enemy? Cancer Cell. 3:445–448. 2003. View Article : Google Scholar : PubMed/NCBI | |
Weiler J and Dittmar T: Cell fusion in human cancer: The dark matter hypothesis. Cells. 8:1322019. View Article : Google Scholar : PubMed/NCBI | |
Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pawelek JM and Chakraborty AK: Fusion of tumour cells with bone marrow-derived cells: A unifying explanation for metastasis. Nat Rev Cancer. 8:377–386. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN and Huysentruyt LC: On the origin of cancer metastasis. Crit Rev Oncog. 18:43–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty AK, Sodi S, Rachkovsky M, Kolesnikova N, Platt JT, Bolognia JL and Pawelek JM: A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Res. 60:2512–2519. 2000.PubMed/NCBI | |
Yilmaz Y, Lazova R, Qumsiyeh M, Cooper D and Pawelek J: Donor Y chromosome in renal carcinoma cells of a female BMT recipient: Visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant. 35:1021–1024. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fidler IJ: Timeline: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jiang E, Yan T, Xu Z and Shang Z: Tumor microenvironment and cell fusion. Biomed Res Int. 2019:50135922019. View Article : Google Scholar : PubMed/NCBI | |
Noubissi FK, Harkness T, Alexander CM and Ogle BM: Apoptosis-induced cancer cell fusion: A mechanism of breast cancer metastasis. FASEB J. 29:4036–4045. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi H and Moon A: Crosstalk between cancer cells and endothelial cells: Implications for tumor progression and intervention. Arch Pharm Res. 41:711–724. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Sun X, Wang CY, Hu P, Chu CY, Liu S, Zhau HE and Chung LW: Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PLoS One. 7:e426532012. View Article : Google Scholar : PubMed/NCBI | |
Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C, Meckley M, Wong J, Stewart L, D'Jamoos C, et al: ‘Stealth dissemination’ of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One. 12:e01844512017. View Article : Google Scholar : PubMed/NCBI | |
Clawson G: The fate of fusions. Cells. 8:132018. View Article : Google Scholar : PubMed/NCBI | |
Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, Mohammadinejad S and Baradaran B: Cancer chemoresistance; biochemical and molecular aspects: A brief overview. Eur J Pharm Sci. 89:20–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miller FR, Mohamed AN and McEachern D: Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res. 49:4316–4321. 1989.PubMed/NCBI | |
Nagler C, Hardt C, Zanker KS and Dittmar T: Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells. Cancer Cell Int. 11:212011. View Article : Google Scholar : PubMed/NCBI | |
Uygur B, Leikina E, Melikov K, Villasmil R, Verma SK, Vary CPH and Chernomordik LV: Interactions with muscle cells boost fusion, stemness, and drug resistance of prostate cancer cells. Mol Cancer Res. 17:806–820. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song K, Song Y, Zhao XP, Shen H, Wang M, Yan TL, Liu K and Shang ZJ: Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential. Exp Cell Res. 328:156–163. 2014. View Article : Google Scholar : PubMed/NCBI | |
Searles SC, Santosa EK and Bui JD: Cell-cell fusion as a mechanism of DNA exchange in cancer. Oncotarget. 9:6156–6173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mirzayans R and Murray D: Intratumor heterogeneity and therapy resistance: Contributions of dormancy, apoptosis reversal (Anastasis) and cell fusion to disease recurrence. Int J Mol Sci. 21:13082020. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN, Arismendi-Morillo G, Mukherjee P and Chinopoulos C: On the origin of ATP synthesis in cancer. iScience. 23:1017612020. View Article : Google Scholar : PubMed/NCBI | |
Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ and Huang P: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65:613–621. 2005.PubMed/NCBI | |
Beck B and Blanpain C: Unravelling cancer stem cell potential. Nat Rev Cancer. 13:727–738. 2013. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B and Zänker KS: Recurrence cancer stem cells-made by cell fusion? Med Hypotheses. 73:542–547. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bartosh TJ, Ullah M, Zeitouni S, Beaver J and Prockop DJ: Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc Natl Acad Sci USA. 113:E6447–E6456. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li G, Kikuchi K, Radka M, Abraham J, Rubin BP and Keller C: IL-4 receptor blockade abrogates satellite cell: Rhabdomyosarcoma fusion and prevents tumor establishment. Stem Cells. 31:2304–2312. 2013. View Article : Google Scholar : PubMed/NCBI | |
Platt JL and Cascalho M: Cell fusion in malignancy: A cause or consequence? a provocateur or cure? Cells. 8:5872019.PubMed/NCBI | |
Fais S and Overholtzer M: Cell-in-cell phenomena in cancer. Nat Rev Cancer. 18:758–766. 2018. View Article : Google Scholar : PubMed/NCBI | |
Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, Kajihara M, Arihiro S, Imazu H, Arakawa H, et al: Fusions between dendritic cells and whole tumor cells as anticancer vaccines. Oncoimmunology. 2:e244372013. View Article : Google Scholar : PubMed/NCBI | |
Koido S: Dendritic-tumor fusion cell-based cancer vaccines. Int J Mol Sci. 17:8282016. View Article : Google Scholar : PubMed/NCBI | |
Platt JL and Cascalho M: IgM in the kidney: A multiple personality disorder. Kidney Int. 88:439–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Song W, Feng J and Zhang XZ: Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv Mater. 31:e19004992019. View Article : Google Scholar : PubMed/NCBI | |
Hass R, von der Ohe J and Ungefroren H: Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation. Cancers (Basel). 11:14322019. View Article : Google Scholar : PubMed/NCBI | |
Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, Grompe M, Fleming WH and Wong MH: Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA. 103:6321–6325. 2006. View Article : Google Scholar : PubMed/NCBI | |
Davies PS, Powell AE, Swain JR and Wong MH: Inflammation and proliferation act together to mediate intestinal cell fusion. PLoS One. 4:e65302009. View Article : Google Scholar : PubMed/NCBI | |
Garvin S, Oda H, Arnesson LG, Lindström A and Shabo I: Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery. J Cancer Res Clin Oncol. 144:1253–1263. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lindström A, Midtbö K, Arnesson LG, Garvin S and Shabo I: Fusion between M2-macrophages and cancer cells results in a subpopulation of radioresistant cells with enhanced DNA-repair capacity. Oncotarget. 8:51370–51386. 2017. View Article : Google Scholar | |
Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS, Chiu JF and Ch'ang HJ: Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother Oncol. 119:250–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Willenbring H: Therapeutic cell fusion. Br J Surg. 92:923–924. 2005. View Article : Google Scholar : PubMed/NCBI |