LZTR1: A promising adaptor of the CUL3 family (Review)
- Authors:
- Hui Zhang
- Xinyi Cao
- Jian Wang
- Qian Li
- Yiting Zhao
- Xiaofeng Jin
-
Affiliations: Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China - Published online on: May 29, 2021 https://doi.org/10.3892/ol.2021.12825
- Article Number: 564
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mani RS: The emerging role of speckle-type POZ protein (SPOP) in cancer development. Drug Discov Today. 19:1498–1502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zou T and Zhang J: Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J. Oct 6;s2020doi: 10.1111/febs.15584. | |
Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Asmar AJ, Beck DB and Werner A: Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res. 396:1123002020. View Article : Google Scholar : PubMed/NCBI | |
Achim W, Regina B, Nia T, Kaya DU and Michael R: Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions. Elife. 7:e354072018. View Article : Google Scholar | |
Senft D, Qi J and Ronai ZA: Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 18:69–88. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rape M: Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 19:59–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI | |
Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teixeira LK and Reed SI: Ubiquitin ligases and cell cycle control. Annu Rev Biochem. 82:387–414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lipkowitz S and Weissman AM: RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cornelius RJ, Ferdaus MZ, Nelson JW and McCormick JA: Cullin-Ring ubiquitin ligases in kidney health and disease. Curr Opin Nephrol Hypertens. 28:490–497. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen RH: Cullin 3 and its role in tumorigenesis. Adv Exp Med Biol. 1217:187–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu J, McCormick JA and Sigmund CD: Cullin-3: Renal and vascular mechanisms regulating blood pressure. Curr Hypertens Rep. 22:612020. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Song J and Ye D: CRL3s: The BTB-CUL3-RING E3 ubiquitin Ligases. Adv Exp Med Biol. 1217:211–223. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cornelius RJ, Yang CL and Ellison DH: Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol. 318:F204–F208. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Shi Q, Li Q, Zhou L, Wang J, Jiang L, Zhao X, Feng K, Lin T, Lin Z, et al: CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-κB signaling. Leukemia. 34:1305–1314. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI | |
Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, et al NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, : Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 44:1310–1315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Wang J, Gao K, Zhang P, Yao L, Tang Y, Tang L, Ma J, Xiao J, Zhang E, et al: Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet. 13:e10067482017. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Fried J, Li Y, Hu L, Gao M, Zhang S and Xu B: Functional roles of Speckle-Type Poz (SPOP) protein in genomic stability. J Cancer. 9:3257–3262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cuneo MJ and Mittag T: The ubiquitin ligase adaptor SPOP in cancer. FEBS J. 286:3946–3958. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Wang J, Li Q, Zhuang H, Yang J, Lin Z, Lin T, Lv Z, Shen L, Yan C, et al: SPOP targets oncogenic protein ZBTB3 for destruction to suppress endometrial cancer. Am J Cancer Res. 9:2797–2812. 2019.PubMed/NCBI | |
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Xu Y, Pan C, Yan L, Wang ZW and Zhu X: The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer. 19:22020. View Article : Google Scholar : PubMed/NCBI | |
Clark A and Burleson M: SPOP and cancer: A systematic review. Am J Cancer Res. 10:704–726. 2020.PubMed/NCBI | |
Maekawa M and Higashiyama S: The roles of SPOP in DNA damage response and DNA replication. Int J Mol Sci. 21:72932020. View Article : Google Scholar : PubMed/NCBI | |
Werner A, Iwasaki S, McGourty CA, Medina-Ruiz S, Teerikorpi N, Fedrigo I, Ingolia NT and Rape M: Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 525:523–527. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li YR, Peng RR, Gao WY, Liu P, Chen LJ, Zhang XL, Zhang NN, Wang Y, Du L, Zhu FY, et al: The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 11:1110–1128. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lührig S, Kolb S, Mellies N and Nolte J: The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. Cell Div. 8:32013. View Article : Google Scholar | |
Jiang T, Sánchez-Rivera F, Soto-Feliciano Y, Yang Q, Song CQ, Bhuatkar A, Haynes CM, Hemann MT and Xue W: Targeting de novo purine synthesis pathway via ADSL depletion impairs liver cancer growth by perturbing mitochondrial function. Hepatology. Dec 17–2020.(Epub ahead of print). doi: 10.1002/hep.31685. View Article : Google Scholar | |
Madden S and Itzhaki L: Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. Biochim Biophys Acta Proteins Proteom. 1868:1404052020. View Article : Google Scholar : PubMed/NCBI | |
Dhamodharan U, Ponjayanthi B, Sireesh D, Bhakkiyalakshmi E and Ramkumar KM: Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Pharmacol Res. 137:205–218. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pintard L, Kurz T, Glaser S, Willis JH, Peter M and Bowerman B: Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol. 13:911–921. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gray WM, Hellmann H, Dharmasiri S and Estelle M: Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell. 14:2137–2144. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A and Rebsamen M: LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 362:1171–1177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang J, Zhang P, Zhao Z, Huang Q, Yun D, Chen J, Chen H, Wang C and Lu D: LZTR1 inactivation promotes MAPK/ERK pathway activation in glioblastoma by stabilizing oncoprotein RIT1. bioRxiv. Mar 15–2020.(Epub ahead of print). | |
Nacak TG, Leptien K, Fellner D, Augustin HG and Kroll J: The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem. 281:5065–5071. 2006. View Article : Google Scholar : PubMed/NCBI | |
Adams J, Kelso R and Cooley L: The kelch repeat superfamily of proteins: Propellers of cell function. Trends Cell Biol. 10:17–24. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wasney GA, Picaud S, Filippakopoulos P, Vedadi M, D'Angiolella V and Bullock AN: Identification of a PGXPP degron motif in dishevelled and structural basis for its binding to the E3 ligase KLHL12. Open Biol. 10:2000412020. View Article : Google Scholar : PubMed/NCBI | |
Heng LZ, Kennedy J, Smithson S, Newbury-Ecob R and Churchill A: New macular findings in individuals with biallelic KLHL7 gene mutation. BMJ Open Ophthalmol. 4:e0002342019. View Article : Google Scholar : PubMed/NCBI | |
Narahara S, Sakai E, Kadowaki T, Yamaguchi Y, Narahara H, Okamoto K, Asahina I and Tsukuba T: KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Sci Rep. 9:35232019. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Pallett MA, Croll TI, Smith GL and Graham SC: Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55. J Biol Chem. 294:6416–6429. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakaguma M, Jorge AA and Arnhold IJ: Noonan syndrome associated with growth hormone deficiency with biallelic LZTR1 variants. Genet Med:. 21:2602019. View Article : Google Scholar : PubMed/NCBI | |
Jacquinet A, Bonnard A, Capri Y, Martin D, Sadzot B, Bianchi E, Servais L, Sacré JP, Cavé H and Verloes A: Oligo-astrocytoma in LZTR1-related Noonan syndrome. Eur J Med Genet. 63:1036172020. View Article : Google Scholar : PubMed/NCBI | |
Deiller C, Van-Gils J, Zordan C, Tinat J, Loiseau H, Fabre T, Delleci C, Cohen J, Vidaud M, Parfait B, et al: Coexistence of schwannomatosis and glioblastoma in two families. Eur J Med Genet. 62:1036802019. View Article : Google Scholar : PubMed/NCBI | |
Merker VL, Esparza S, Smith MJ, Stemmer-Rachamimov A and Plotkin SR: Clinical features of schwannomatosis: A retrospective analysis of 87 patients. Oncologist. 17:1317–1322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kehrer-Sawatzki H, Farschtschi S, Mautner VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mansouri S, Suppiah S, Mamatjan Y, Paganini I, Liu JC, Karimi S, Patil V, Nassiri F, Singh O, Sundaravadanam Y, et al: Epigenomic, genomic, and transcriptomic landscape of schwannomatosis. Acta Neuropathol. 141:101–116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schubbert S, Zenker M, Rowe SL, Böll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, et al: Germline KRAS mutations cause Noonan syndrome. Nat Genet. 38:331–336. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, et al: Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 93:173–180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, Tankka A, Galeas J, Urisman A and McCormick F: RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 363:1226–1230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Umeki I, Niihori T, Abe T, Kanno SI, Okamoto N, Mizuno S, Kurosawa K, Nagasaki K, Yoshida M, Ohashi H, et al: Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum Genet. 138:21–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T and Aoki Y: LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 27:1023–1035. 2020. View Article : Google Scholar : PubMed/NCBI | |
Steklov M, Pandolf S, Baietti MF, Batiuk A, Carai P, Najm P, Zhang M, Jang H, Renzi F, Cai Y, et al: Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 362:1177–1182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zinatizadeh MR, Momeni SA, Zarandi PK, Chalbatani GM, Dana H, Mirzaei HR, Akbari ME and Miri SR: The role and function of Ras-association domain family in cancer: A Review. Genes Dis. 6:378–384. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tidyman WE and Rauen KA: Pathogenetics of the RASopathies. Hum Mol Genet. 25:R123–R132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Malaquias AC and Jorge AAL: Activation of the MAPK pathway (RASopathies) and partial growth hormone insensitivity. Mol Cell Endocrinol. 519:1110402021. View Article : Google Scholar : PubMed/NCBI | |
Humphries B, Wang Z and Yang C: Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells. 9:21672020. View Article : Google Scholar : PubMed/NCBI | |
Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moore AR, Rosenberg SC, McCormick F and Malek S: RAS-targeted therapies: Is the undruggable drugged? Nat Rev Drug Discov. 19:533–552. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, König R, et al: A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 42:27–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Higgins EM, Bos JM, Mason-Suares H, Tester DJ, Ackerman JP, MacRae CA, Sol-Church K, Gripp KW, Urrutia R and Ackerman MJ: Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight. 2:e912252017. View Article : Google Scholar : PubMed/NCBI | |
Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, et al: Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet. 23:4315–4327. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ratner N and Miller SJ: A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 15:290–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dunnett-Kane V, Burkitt-Wright E, Blackhall FH, Malliri A, Evans DG and Lindsay CR: Germline and sporadic cancers driven by the RAS pathway: Parallels and contrasts. Ann Oncol. 31:873–883. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, Blair E, Borck G, Brinkmann J, Craigen W, et al Members of the Undiagnosed Diseases Network, : Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 20:1175–1185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aoki Y, Niihori T, Inoue S and Matsubara Y: Recent advances in RASopathies. J Hum Genet. 61:33–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
Motta M, Fidan M, Bellacchio E, Pantaleoni F, Schneider-Heieck K, Coppola S, Borck G, Salviati L, Zenker M, Cirstea IC, et al: Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Hum Mol Genet. 28:1007–1022. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pagnamenta AT, Kaisaki PJ, Bennett F, Burkitt-Wright E, Martin HC, Ferla MP, Taylor JM, Gompertz L, Lahiri N, Tatton-Brown K, et al DDD Study, : Delineation of dominant and recessive forms of LZTR1-associated Noonan syndrome. Clin Genet. 95:693–703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M and McCormick F: A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell. 22:217–230. 2006. View Article : Google Scholar : PubMed/NCBI | |
Young LC, Hartig N, Muñoz-Alegre M, Oses-Prieto JA, Durdu S, Bender S, Vijayakumar V, Vietri Rudan M, Gewinner C, Henderson S, et al: An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol Cell. 52:679–692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shi GX, Cai W and Andres DA: Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khalil A and Nemer G: The potential oncogenic role of the RAS-like GTP-binding gene RIT1 in glioblastoma. Cancer Biomark. 29:509–519. 2020. View Article : Google Scholar : PubMed/NCBI | |
Van R, Cuevas-Navarro A, Castel P and McCormick F: The molecular functions of RIT1 and its contribution to human disease. Biochem J. 477:2755–2770. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu M, Chen T, Cui Y, Tian H, Yao M, et al: HIF-1α-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett. 460:96–107. 2019. View Article : Google Scholar : PubMed/NCBI | |
Venugopal V and Romero CJ: Endocrine complications of Noonan syndrome beyond short stature. Pediatr Endocrinol Rev. 16 (Suppl 2):465–470. 2019.PubMed/NCBI | |
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Ang XL, Shirogane T and Wade Harper J: Identification of substrates for F-box proteins. Methods Enzymol. 399:287–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li S, Balmain A and Counter CM: A model for RAS mutation patterns in cancers: Finding the sweet spot. Nat Rev Cancer. 18:767–777. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, et al American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine, : Genetic Basis for Congenital Heart Disease: Revisited: A scientific statement from the American Heart Association. Circulation. 138:e653–e711. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tajan M, Paccoud R, Branka S, Edouard T and Yart A: The RASopathy family: Consequences of germline activation of the RAS/MAPK pathway. Endocr Rev. 39:676–700. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mossé YP, Nakagawara A, Parareda A, Scollon SR, Schneider KW, Skalet AH, et al: Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 23:e98–e106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dolecek TA, Propp JM, Stroup NE and Kruchko C: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 14 (Suppl 5):v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, et al: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26:756–784. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee E, Yong RL, Paddison P and Zhu J: Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 53:201–211. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, et al: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA. 102:5814–5819. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mischel PS, Nelson SF and Cloughesy TF: Molecular analysis of glioblastoma: Pathway profiling and its implications for patient therapy. Cancer Biol Ther. 2:242–247. 2003. View Article : Google Scholar : PubMed/NCBI | |
Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S and Kuo MD: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA. 105:5213–5218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI | |
Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et al: The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 45:1141–1149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lein PJ, Guo X, Shi GX, Moholt-Siebert M, Bruun D and Andres DA: The novel GTPase Rit differentially regulates axonal and dendritic growth. J Neurosci. 27:4725–4736. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA and Andres DA: An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell. 22:3231–3241. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shi GX and Andres DA: Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol. 25:830–846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shi GX, Han J and Andres DA: Rin GTPase couples nerve growth factor signaling to p38 and b-Raf/ERK pathways to promote neuronal differentiation. J Biol Chem. 280:37599–37609. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rusyn EV, Reynolds ER, Shao H, Grana TM, Chan TO, Andres DA and Cox AD: Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene. 19:4685–4694. 2000. View Article : Google Scholar : PubMed/NCBI | |
Knudson AG Jr: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA. 68:820–823. 1971. View Article : Google Scholar : PubMed/NCBI | |
Ren R: Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 5:172–183. 2005. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Horton A and Lipton JH: Treatment outcomes in chronic myeloid leukemia: Does one size fit all? J Natl Compr Canc Netw. 18:1421–1428. 2020. View Article : Google Scholar : PubMed/NCBI | |
Crisà E, Nicolosi M, Ferri V, Favini C, Gaidano G and Patriarca A: Atypical chronic myeloid leukemia: Where are we now? Int J Mol Sci. 21:68622020. View Article : Google Scholar | |
Braun TP, Eide CA and Druker BJ: Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 37:530–542. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vetrie D, Helgason GV and Copland M: The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 20:158–173. 2020. View Article : Google Scholar : PubMed/NCBI | |
Evans DG, Bowers NL, Tobi S, Hartley C, Wallace AJ, King AT, Lloyd SK, Rutherford SA, Hammerbeck-Ward C, Pathmanaban ON, et al: Schwannomatosis: A genetic and epidemiological study. J Neurol Neurosurg Psychiatry. 89:1215–1219. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kehrer-Sawatzki H, Farschtschi S, Mautner VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smith MJ, Isidor B, Beetz C, Williams SG, Bhaskar SS, Richer W, O'Sullivan J, Anderson B, Daly SB, Urquhart JE, et al: Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology. 84:141–147. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M, Naslavsky MS, et al: Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet. 52:413–421. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J, Frayling I, Efstathiou J, Pack K, Payne S, et al: The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: A new facet to Knudson's ‘two-hit’ hypothesis. Nat Med. 5:1071–1075. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F and Wesseling P: Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet. 80:805–810. 2007. View Article : Google Scholar : PubMed/NCBI | |
Paganini I, Chang VY, Capone GL, Vitte J, Benelli M, Barbetti L, Sestini R, Trevisson E, Hulsebos TJ, Giovannini M, et al: Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet. 23:963–968. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smith MJ, Pathmanaban ON, Coope DJ, King AT and Evans DG: Comment on: SMARCB1 gene mutation predisposes to earlier development of glioblastoma: A case report of familial GBM. J Neuropathol Exp Neurol. 80:289–290. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fonkem E, Peng S, Berens M and Mukherjee S: Authors' reply: SMARCB1 gene mutation predisposes to earlier development of glioblastoma: A case report of familial GBM. J Neuropathol Exp Neurol. 80:290–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschké P, Nectoux J, Orhant L, Zordan C, Goizet C, Goutagny S, et al: Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol. 20:917–929. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maurer GW, Malita A, Nagy S, Koyama T, Werge TM, Halberg KA, Texada MJ and Rewitz K: Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control. PLoS Genet. 16:e10087272020. View Article : Google Scholar : PubMed/NCBI | |
Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M and Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 63:851–859. 1990. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Wang Y and Li X: Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 9:871–879. 2019. View Article : Google Scholar : PubMed/NCBI | |
Buscail L, Bournet B and Cordelier P: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 17:153–168. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krastev DB and Buchholz F: Ribosome biogenesis and p53: Who is regulating whom? Cell Cycle. 10:3417–3418. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weiss RA: A perspective on the early days of RAS research. Cancer Metastasis Rev. 39:1023–1028. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uprety D and Adjei AA: KRAS: From undruggable to a druggable cancer target. Cancer Treat Rev. 89:1020702020. View Article : Google Scholar : PubMed/NCBI | |
Chen H and Zhao J: KRAS oncogene may be another target conquered in non-small cell lung cancer (NSCLC). Thorac Cancer. 11:3425–3435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goulding RE, Chenoweth M, Carter GC, Boye ME, Sheffield KM, John WJ, Leusch MS, Muehlenbein CE, Li L, Jen MH, et al: KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: A systematic literature review and meta-analysis. Cancer Treat Res Commun. 24:1002002020. View Article : Google Scholar : PubMed/NCBI | |
Passiglia F, Malapelle U, Del Re M, Righi L, Pagni F, Furlan D, Danesi R, Troncone G and Novello S: KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges. Eur J Cancer. 137:57–68. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matthew B, Juliati R and Field SJ: GOLPH3 links the Golgi, DNA damage, and cancer. Cancer Res. 75:624–627. 2015. View Article : Google Scholar : PubMed/NCBI |