1
|
Buoncervello M, Gabriele L and Toschi E:
The janus face of tumor microenvironment targeted by immunotherapy.
Int J Mol Sci. 20:43202019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pitt JM, Marabelle A, Eggermont A, Soria
JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment:
Removing obstruction to anticancer immune responses and
immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kumar V, Patel S, Tcyganov E and
Gabrilovich DI: The nature of myeloid-derived suppressor cells in
the tumor microenvironment. Trends Immunol. 37:208–220. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Marvel D and Gabrilovich DI:
Myeloid-derived suppressor cells in the tumor microenvironment:
Expect the unexpected. J Clin Invest. 125:3356–3364. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Gnjatic S, Bronte V, Brunet LR, Butler MO,
Disis ML, Galon J, Hakansson LG, Hanks BA, Karanikas V, Khleif SN,
et al: Identifying baseline immune-related biomarkers to predict
clinical outcome of immunotherapy. J Immunother Cancer. 5:442017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Spencer KR, Wang J, Silk AW, Ganesan S,
Kaufman HL and Mehnert JM: Biomarkers for immunotherapy: Current
developments and challenges. Am Soc Clin Oncol Educ Book.
35:e493–e503. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Masucci GV, Cesano A, Hawtin R, Janetzki
S, Zhang J, Kirsch I, Dobbin KK, Alvarez J, Robbins PB, Selvan SR,
et al: Validation of biomarkers to predict response to
immunotherapy in cancer: Volume I-pre-analytical and analytical
validation. J Immunother Cancer. 4:762016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Anger N and Rossowska J: Myeloid-derived
suppressor cells as a target for anticancer therapy. Postępy
Higieny i Medycyny Doświadczalnej. 72:1179–1198. 2018. View Article : Google Scholar
|
9
|
Xiu B, Lin Y, Grote DM, Ziesmer SC,
Gustafson MP, Maas ML, Zhang Z, Dietz AB, Porrata LF, Novak AJ, et
al: IL-10 induces the development of immunosuppressive
CD14(+)HLA-DR(low/-) monocytes in B-cell non-Hodgkin lymphoma.
Blood Cancer J. 5:e3282015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wu L, Deng Z, Peng Y, Han L, Liu J, Wang
L, Li B, Zhao J, Jiao S and Wei H: Ascites-derived IL-6 and IL-10
synergistically expand CD14+HLA-DR−/low
myeloid-derived suppressor cells in ovarian cancer patients.
Oncotarget. 8:76843–76856. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Steinbrink K, Wölfl M, Jonuleit H, Knop J
and Enk AH: Induction of tolerance by IL-10-treated dendritic
cells. J Immunol. 159:4772–4780. 1997.PubMed/NCBI
|
12
|
Cavani A, Nasorri F, Prezzi C, Sebastiani
S, Albanesi C and Girolomoni G: Human CD4+ T lymphocytes
with remarkable regulatory functions on dendritic cells and
nickel-specific Th1 immune responses. J Invest Dermatol.
114:295–302. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sica A, Saccani A, Bottazzi B,
Polentarutti N, Vecchi A, van Damme J and Mantovani A: Autocrine
production of IL-10 mediates defective IL-12 production and
NF-kappa B activation in tumor-associated macrophages. J Immunol.
164:762–767. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dennis KL, Blatner NR, Gounari F and
Khazaie K: Current status of interleukin-10 and regulatory T-cells
in cancer. Curr Opin Oncol. 25:637–645. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fiorentino DF, Bond MW and Mosmann TR: Two
types of mouse T helper cell. IV. Th2 clones secrete a factor that
inhibits cytokine production by Th1 clones. J Exp Med.
170:2081–2095. 1989. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sato T, Terai M, Tamura Y, Alexeev V,
Mastrangelo MJ and Selvan SR: Interleukin 10 in the tumor
microenvironment: A target for anticancer immunotherapy. Immunol
Res. 51:170–182. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rossowska J, Anger N, Szczygieł A,
Mierzejewska J and Pajtasz-Piasecka E: Reprogramming the murine
colon cancer microenvironment using lentivectors encoding shRNA
against IL-10 as a component of a potent DC-based
chemoimmunotherapy. J Exp Clin Cancer Res. 37:1262018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sistigu A, Viaud S, Chaput N, Bracci L,
Proietti E and Zitvogel L: Immunomodulatory effects of
cyclophosphamide and implementations for vaccine design. Semin
Immunopathol. 33:369–383. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pajtasz-Piasecka E, Szyda A, Rossowska J,
Krawczenko A, Indrová M, Grabarczyk P, Wysocki P, Mackiewicz A and
Duś D: Loss of tumorigenicity of murine colon carcinoma MC38/0 cell
line after transduction with a retroviral vector carrying murine
IL-12 genes. Folia Biol (Praha). 50:7–14. 2004.PubMed/NCBI
|
20
|
Rossowska J, Pajtasz-Piasecka E, Anger N,
Wojas-Turek J, Kicielińska J, Piasecki E and Duś D:
Cyclophosphamide and IL-12-transduced DCs enhance the antitumor
activity of tumor antigen-stimulated DCs and reduce Tregs and MDSCs
number. J Immunother. 37:427–439. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rossowska J, Anger N, Szczygieł A,
Mierzejewska J and Pajtasz-Piasecka E: Intratumoral
lentivector-mediated TGF-β1 gene downregulation as a potent
strategy for enhancing the antitumor effect of therapy composed of
cyclophosphamide and dendritic cells. Front Immunol. 8:7132017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Breckpot K, Escors D, Arce F, Lopes L,
Karwacz K, Van Lint S, Keyaerts M and Collins M: HIV-1 Lentiviral
vector immunogenicity is mediated by toll-like receptor 3 (TLR3)
and TLR7. J Virol. 84:5627–5636. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanikawa T, Wilke CM, Kryczek I, Chen GY,
Kao J, Núñez G and Zou W: Interleukin (IL)-10 ablation promotes
tumor development, growth and metastasis. Cancer Res. 72:420–429.
2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Noman MZ, Desantis G, Janji B, Hasmim M,
Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct
target of HIF-1α, and its blockade under hypoxia enhanced
MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Breckpot K, Emeagi PU and Thielemans K:
Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther.
8:438–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Furmanov K, Elnekave M, Lehmann D, Clausen
BE, Kotton DN and Hovav AH: The role of skin-derived dendritic
cells in CD8+ T cell priming following immunization with
lentivectors. J Immunol. 184:4889–4897. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Olbrich H, Slabik C and Stripecke R:
Reconstructing the immune system with lentiviral vectors. Virus
Genes. 53:723–732. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Milone MC and O'Doherty U: Clinical use of
lentiviral vectors. Leukemia. 32:1529–1541. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nash AA and Dutia BM: The Immune response
to viral infections. Topley & Wilson's Microbiology and
Microbial Infections. American Cancer Society, . 15–Mar;2010.doi:
10.1002/9780470688618.taw0220. View Article : Google Scholar
|
30
|
Tan Z, Liu L, Chiu MS, Cheung KW, Yan CW,
Yu Z, Lee BK, Liu W, Man K and Chen Z: Virotherapy-recruited
PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by
IL-10-mediated dendritic cell suppression. Oncoimmunology.
8:e15186722019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rossowska J, Anger N, Kicielińska J,
Pajtasz-Piasecka E, Bielawska-Pohl A, Wojas-Turek J and Duś D:
Temporary elimination of IL-10 enhanced the effectiveness of
cyclophosphamide and BMDC-based therapy by decrease of the
suppressor activity of MDSCs and activation of antitumour immune
response. Immunobiology. 220:389–398. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Abu Eid R, Razavi GSE, Mkrtichyan M, Janik
J and Khleif SN: Old-school chemotherapy in immunotherapeutic
combination in cancer, a low-cost drug repurposed. Cancer Immunol
Res. 4:377–382. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang XM, Zhang NR, Lin XT, Zhu CY, Zou
YF, Wu XJ, He XS, He XW, Wan YL and Lan P: Antitumor immunity of
low-dose cyclophosphamide: Changes in T cells and cytokines
TGF-beta and IL-10 in mice with colon-cancer liver metastasis.
Gastroenterol Rep (Oxf). 8:56–65. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Matar P, Rozados VR, Gervasoni SI and
Scharovsky OG: Down regulation of T-cell-derived IL-10 production
by low-dose cyclophosphamide treatment in tumor-bearing rats
restores in vitro normal lymphoproliferative response. Int
Immunopharmacol. 1:307–319. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu
ZZ, Zhang HH, Kong W and Yu XH: Enhancement of fibroblast
activation protein α-based vaccines and adenovirus boost immunity
by cyclophosphamide through inhibiting IL-10 expression in 4T1
tumor bearing mice. Vaccine. 34:4526–4535. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vanmeerbeek I, Sprooten J, De Ruysscher D,
Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer
G, Galluzzi L and Garg AD: Trial watch: Chemotherapy-induced
immunogenic cell death in immuno-oncology. Oncoimmunology.
9:17034492020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schiavoni G, Sistigu A, Valentini M,
Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT,
Belardelli F, et al: Cyclophosphamide synergizes with type I
interferons through systemic dendritic cell reactivation and
induction of immunogenic tumor apoptosis. Cancer Res. 71:768–778.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mikyšková R, Indrová M, Vlková V, Bieblová
J, Šímová J, Paračková Z, Pajtasz-Piasecka E, Rossowska J and
Reiniš M: DNA demethylating agent 5-azacytidine inhibits
myeloid-derived suppressor cells induced by tumor growth and
cyclophosphamide treatment. J Leukoc Biol. 95:743–753. 2014.
View Article : Google Scholar
|
39
|
Sevko A, Sade-Feldman M, Kanterman J,
Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D,
Baniyash M and Umansky V: Cyclophosphamide promotes chronic
inflammation-dependent immunosuppression and prevents antitumor
response in melanoma. J Invest Dermatol. 133:1610–1619. 2013.
View Article : Google Scholar : PubMed/NCBI
|