Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the MALAT1/yes‑associated protein signaling pathway
- Authors:
- Xudong Jiu
- Yang Liu
- Jin Wen
-
Affiliations: Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China, Department of Ophthalmology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China - Published online on: June 9, 2021 https://doi.org/10.3892/ol.2021.12858
- Article Number: 597
-
Copyright: © Jiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM and Chen VW: Incidence of noncutaneous melanomas in the U.S. Cancer. 103:1000–1007. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ortega MA, Fraile-Martinez O, Garcia-Honduvilla N, Álvarez-Mon M, Buján J and Teus MA: Update on uveal melanoma: Translational research from biology to clinical practice (review). Int J Oncol. 57:1262–1279. 2020. View Article : Google Scholar : PubMed/NCBI | |
Landreville S, Agapova OA and Harbour JW: Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol. 4:629–636. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh AD, Bergman L and Seregard S: Uveal melanoma: Epidemiologic aspects. Ophthalmol Clin North Am. 1875–84. (viii)2005. View Article : Google Scholar : PubMed/NCBI | |
Chandran SS, Somerville RPT, Yang JC, Sherry RM, Klebanoff CA, Goff SL, Wunderlich JR, Danforth DN, Zlott D, Paria BC, et al: Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18:792–802. 2017. View Article : Google Scholar : PubMed/NCBI | |
Basile MS, Mazzon E, Russo A, Mammana S, Longo A, Bonfiglio V, Fallico M, Caltabiano R, Fagone P, Nicoletti F, et al: Differential modulation and prognostic values of immune-escape genes in uveal melanoma. PLoS One. 14:e02102762019. View Article : Google Scholar : PubMed/NCBI | |
Petralia MC, Mazzon E, Fagone P, Russo A, Longo A, Avitabile T, Nicoletti F, Reibaldi M and Basile MS: Characterization of the pathophysiological role of CD47 in uveal melanoma. Molecules. 24:24502019. View Article : Google Scholar : PubMed/NCBI | |
Basile MS, Mazzon E, Fagone P, Longo A, Russo A, Fallico M, Bonfiglio V, Nicoletti F, Avitabile T and Reibaldi M: Immunobiology of uveal melanoma: State of the art and therapeutic targets. Front Oncol. 9:11452019. View Article : Google Scholar : PubMed/NCBI | |
Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, Falchook GS, Pant S, Whiteside M, Rasco DR, et al: Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol. 34:3562–3569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Parker T, Rigney G, Kallos J, Stefko ST, Kano H, Niranjan A, Green AL, Aziz T, Rath P and Lunsford LD: Gamma knife radiosurgery for uveal melanomas and metastases: A systematic review and meta-analysis. Lancet Oncol. 21:1526–1536. 2020. View Article : Google Scholar : PubMed/NCBI | |
Selumetinib shows promise in metastatic uveal melanoma. Cancer Discov. 3:OF82013. View Article : Google Scholar | |
Pelster MS, Gruschkus SK, Bassett R, Gombos DS, Shephard M, Posada L, Glover MS, Simien R, Diab A, Hwu P, et al: Nivolumab and ipilimumab in metastatic uveal melanoma: Results from a single-arm phase II study. J Clin Oncol. 39:599–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, Piulats JM, Wolter P, Cocquyt V, Chmielowski B, et al: Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: A phase III, multicenter, randomized trial (SUMIT). J Clin Oncol. 36:1232–1239. 2018. View Article : Google Scholar : PubMed/NCBI | |
Judd R, Bagley MC, Li M, Zhu Y, Lei C, Yuzuak S, Ekelöf M, Pu G, Zhao X, Muddiman DC and Xie DY: Artemisinin biosynthesis in non-glandular trichome cells of artemisia annua. Mol Plant. 12:704–714. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, et al: Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): An open-label, randomised trial. Lancet. 376:1647–1657. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vivas L, Rattray L, Stewart L, Bongard E, Robinson BL, Peters W and Croft SL: Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo. Acta Trop. 105:222–228. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeng XZ, Zhang YY, Yang Q, Wang S, Zou BH, Tan YH, Zou M, Liu SW and Li XJ: Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca2+-NFATc1 signaling pathway. Acta Pharmacol Sin. 41:229–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uzun T, Toptas O, Saylan A, Carver H and Turkoglu SA: Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77:1092.e1–1092.e12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vatsveen TK, Myhre MR, Steen CB, Wälchli S, Lingjærde OC, Bai B, Dillard P, Theodossiou TA, Holien T, Sundan A, et al: Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol. 11:232018. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa C, Senba M and Mori N: Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma. Eur J Pharmacol. 872:1729532020. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Zhao CR, Yin H, Wang K and Gao JJ: Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin. 41:1609–1620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Gan S, Han L, Li X, Xie X, Zou D and Sun H: Artesunate induces apoptosis and inhibits the proliferation, stemness, and tumorigenesis of leukemia. Ann Transl Med. 8:7672020. View Article : Google Scholar : PubMed/NCBI | |
Beccafico S, Morozzi G, Marchetti MC, Riccardi C, Sidoni A, Donato R and Sorci G: Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis. 36:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng L and Pan J: The anti-malarial drug artesunate blocks Wnt/β-catenin pathway and inhibits growth, migration and invasion of uveal melanoma cells. Curr Cancer Drug Targets. 18:988–998. 2018. View Article : Google Scholar : PubMed/NCBI | |
Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A and Schuler G: Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncol Rep. 14:1599–1603. 2005.PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Zhang D, Fan Y, Chao Y, Chang J, Li N, Han L and Han C: Regulation of cancer stem cell self-renewal by HOXB9 antagonizes endoplasmic reticulum stress-induced melanoma cell apoptosis via the miR-765-FOXA2 axis. J Invest Dermatol. 138:1609–1619. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, Haber DA and Settleman J: TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 148:639–650. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ogawa S, Fukuda A, Matsumoto Y, Hanyu Y, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Yoshikawa T, et al: SETDB1 inhibits p53-mediated apoptosis and is required for formation of pancreatic ductal adenocarcinomas in mice. Gastroenterology. 159:682–696.e13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, et al: Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell. 32:490–505.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, Phan N, Gomez-Caraballo M, Archibald HL, Li C, Fraser C, et al: Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discov. 8:1598–1613. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Tian Y, Wang C, Jiang K, Li R, Yao Y, Zhang R, Sun D, Liang R, Gao Z, et al: CBX2 regulates proliferation and apoptosis via the phosphorylation of YAP in hepatocellular carcinoma. J Cancer. 10:2706–2719. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Chen Y, Wang F, Wu H, Zhang Y, Liu J, Cai Y, Huang S, He N, Hu Z and Jin X: Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem Biol Interact. 331:1092732020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Shan T, Ding W, Hua Z, Shen Y, Lu Z, Chen B and Dai T: Study on mechanism about long noncoding RNA MALAT1 affecting pancreatic cancer by regulating Hippo-YAP signaling. J Cell Physiol. 233:5805–5814. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang Y, Zhong W, Cheng H and Tian Z: The long non-coding RNA MALAT1 enhances ovarian cancer cell stemness by inhibiting YAP translocation from nucleus to cytoplasm. Med Sci Monit. 26:e9220122020. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, et al: Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity. 48:675–687.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li Q, Dang K, Ma S, Cotton JL, Yang S, Zhu LJ, Deng AC, Ip YT, Johnson RL, et al: YAP/TAZ activation drives uveal melanoma initiation and progression. Cell Rep. 29:3200–3211.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al: Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 50:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matthews DR, Paldanius PM, Proot P, Chiang Y, Stumvoll M and Del Prato S; VERIFY study group, : Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet. 394:1519–1529. 2019. View Article : Google Scholar : PubMed/NCBI | |
Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, et al: Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet. 393:678–688. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe D and Bombardier C: Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: Abridged Cochrane systematic review and network meta-analysis. BMJ. 353:i17772016. View Article : Google Scholar : PubMed/NCBI | |
Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MR, Scudamore CL, Cereser B, Crnogorac-Jurcevic T, McDonald S, Elia G, et al: Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 27:123–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y and Liu Z: Intelligent albumin-MnO2 nanoparticles as pH-/H2 O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 28:7129–7136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, Sun X and Li J: Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 108:478–487. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh AD, Turell ME and Topham AK: Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology. 118:1881–1885. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Rodriguez B, Latorre A, Posch C and Somoza A: Recent advances in uveal melanoma treatment. Med Res Rev. 37:1350–1372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prasad S, Yadav VR, Sundaram C, Reuter S, Hema PS, Nair MS, Chaturvedi MM and Aggarwal BB: Crotepoxide chemosensitizes tumor cells through inhibition of expression of proliferation, invasion, and angiogenic proteins linked to proinflammatory pathway. J Biol Chem. 291:169212016. View Article : Google Scholar : PubMed/NCBI | |
Chian S, Thapa R, Chi Z, Wang XJ and Tang X: Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem Biophys Res Commun. 447:602–608. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilding JP: Combination therapy for obesity. J Psychopharmacol. 31:1503–1508. 2017. View Article : Google Scholar : PubMed/NCBI | |
Matsunaga S, Kishi T and Iwata N: Combination therapy with cholinesterase inhibitors and memantine for Alzheimer's disease: A systematic review and meta-analysis. Int J Neuropsychopharmacol. 18:pyu1152014.PubMed/NCBI | |
Mijatović S, Savić-Radojević A, Plješa-Ercegovac M, Simić T, Nicoletti F and Maksimović-Ivanić D: The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants (Basel). 9:3742020. View Article : Google Scholar | |
Assi M: The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol. 313:R646–R653. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y and Huang P: Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 69:2375–2383. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Yu CR, Li WH and Li WX: Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res. 18:879–888. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Higuchi M, Makokha GN, Matsuki H, Yoshita M, Tanaka Y and Fujii M: HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood. 122:715–725. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qin G, Wu L, Liu H, Pang Y, Zhao C, Wu S, Wang X and Chen T: Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells. Exp Cell Res. 336:308–317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koo JH and Guan KL: Interplay between YAP/TAZ and metabolism. Cell Metab. 28:196–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zanconato F, Cordenonsi M and Piccolo S: YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wu S, Barrera J, Matthews K and Pan D: The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the drosophila homolog of YAP. Cell. 122:421–434. 2005. View Article : Google Scholar : PubMed/NCBI | |
Piccolo S, Dupont S and Cordenonsi M: The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI | |
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB and Yi C: YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev Cell. 49:425–443.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dent P, Booth L, Roberts JL, Liu J, Poklepovic A, Lalani AS, Tuveson D, Martinez J and Hancock JF: Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene. 38:5890–5904. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brouwer NJ, Konstantinou EK, Gragoudas ES, Marinkovic M, Luyten GPM, Kim IK, Jager MJ and Vavvas DG: Targeting the YAP/TAZ pathway in uveal and conjunctival melanoma with verteporfin. Invest Ophthalmol Vis Sci. 62:32021. View Article : Google Scholar : PubMed/NCBI | |
Kumar VL, Verma S and Das P: Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev Res. 80:1089–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng FB and Qiu HY: Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother. 102:1209–1220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25:1285–1298. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Kim K, Sheng Y, Cho J, Qian Z, Zhao YY and Hu G, Pan D, Malik AB and Hu G: YAP controls endothelial activation and vascular inflammation through TRAF6. Circ Res. 123:43–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB and Chess A: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 8:392007. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Hamblin MH and Yin KJ: The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 14:1705–1714. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L, et al: m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 12:1352019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Jiang T, Jia Y, Zou J, Wang X and Gu W: LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 18:2509–2523. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang H, Zhang Y, Zhen N, Zhang L, Qiao Y, Weng W, Liu X, Ma L, Xiao W, et al: Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cell Signal. 26:1048–1059. 2014. View Article : Google Scholar : PubMed/NCBI |