1
|
Olbryt M: Molecular background of skin
melanoma development and progression: Therapeutic implications.
Postepy Dermatol Alergol. 36:129–138. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Davis LE, Shalin SC and Tackett AJ:
Current state of melanoma diagnosis and treatment. Cancer Biol
Ther. 20:1366–1379. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee JH, Cho SM, Kim HM, Hong ND and Yoo
ID: Immunostimulating activity of polysaccharides from mycelia of
Phellinus linteus grown under different culture conditions. J
Microbiol Biotechnol. 7:2–55. 1997.
|
4
|
Chen H, Tian T, Miao H and Zhao YY:
Traditional uses, fermentation, phytochemistry and pharmacology of
Phellinus linteus: A review. Fitoterapia. 113:6–26. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen W, Tan H, Liu Q, Zheng X, Zhang H,
Liu Y and Xu L: A review: The bioactivities and pharmacological
applications of Phellinus linteus. Molecules. 24:18882019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Huo J, Zhong S, Du X, Cao Y, Wang W, Sun
Y, Tian Y, Zhu J, Chen J, Xuan L, et al: Whole-genome sequence of
Phellinus gilvus (mulberry Sanghuang) reveals its unique
medicinal values. J Adv Res. 24:325–335. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Meera CR, Janardhanan KK and Karunagaran
D: Antiproliferative and apoptotic activities of the medicinal
mushroom Phellinus rimosus (Agaricomycetes) on HCT116 human
colorectal carcinoma cells. Int J Med Mushrooms. 20:935–945. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang FF, Shi C, Yang Y, Fang Y, Sheng L
and Li N: Medicinal mushroom Phellinus igniarius induced
cell apoptosis in gastric cancer SGC-7901 through a
mitochondria-dependent pathway. Biomed Pharmacother. 102:18–25.
2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Im KH, Baek SA, Choi J and Lee TS:
Antioxidant, anti-melanogenic and anti-wrinkle effects of
Phellinus vaninii. Mycobiology. 47:494–505. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bae JS, Jang KH, Yim H and Jin HK:
Polysaccharides isolated from Phellinus gilvus inhibit
melanoma growth in mice. Cancer Lett. 218:43–52. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bae JS, Jang KH, Yim H, Park SC and Jin
HK: Inhibitory effects of polysaccharides isolated from
Phellinus gilvus on benzo(a)pyrene-induced forestomach
carcinogenesis in mice. World J Gastroenterol. 11:577–579. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhong S, Li YG, Ji DF, Lin TB and Lv ZQ:
Protocatechualdehyde induces S-phase arrest and apoptosis by
stimulating the p27KIP1-Cyclin A/D1-CDK2 and mitochondrial
apoptotic pathways in HT-29 Cells. Molecules. 21:9342016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Chao W, Deng JS, Li PY, Liang YC and Huang
GJ: 3,4-Dihydroxybenzalactone suppresses human non-small cell lung
carcinoma cells metastasis via suppression of epithelial to
mesenchymal transition, ROS-mediated PI3K/AKT/MAPK/MMP and NFκB
signaling pathways. Molecules. 22:5372017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu YJ, Lyu JL, Kuo YH, Chiu CY, Wen KC
and Chiang HM: The anti-melanogenesis effect of
3,4-dihydroxybenzalacetone through downregulation of melanosome
maturation and transportation in B16F10 and human epidermal
melanocytes. Int J Mol Sci. 22:28232021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang Y, Zhang L, Chen Q, Lu WL and Li N:
Antitumor effects of extract of the oak bracket medicinal mushroom,
Phellinus baumii (Agaricomycetes), on human melanoma cells
A375 in vitro and in vivo. Int J Med Mushrooms. 22:197–209. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhong S, Jin Q, Yu T, Zhu J and Li Y:
Phellinus gilvus derived protocatechualdehyde induces G0/G1
phase arrest and apoptosis in murine B16 F10 cells. Mol Med Rep.
21:1107–1114. 2020.PubMed/NCBI
|
17
|
Huo J, Sun Y, Zhong S, Li Y, Yang R, Xia
L, Wang J, Zhang M and Zhu J: Safety evaluation of aqueous extracts
of Sanghuangporus vaninii fruiting body in Sprague-Dawley
rats. Food Sci Nutr. 8:5107–5113. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Harvey AL, Edrada-Ebel R and Quinn RJ: The
re-emergence of natural products for drug discovery in the genomics
era. Nat Rev Drug Discov. 14:111–129. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Moussa RS, Park KC, Kovacevic Z and
Richardson DR: Ironing out the role of the cyclin-dependent kinase
inhibitor, p21 in cancer: Novel iron chelating agents to target p21
expression and activity. Free Radic Biol Med. 133:276–294. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Diaz-Moralli S, Tarrado-Castellarnau M,
Miranda A and Cascante M: Targeting cell cycle regulation in cancer
therapy. Pharmacol Ther. 138:255–271. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Al Bitar S and Gali-Muhtasib H: The role
of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting
cancer: Molecular mechanisms and novel therapeutics. Cancers
(Basel). 11:E14752019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Golias CH, Charalabopoulos A and
Charalabopoulos K: Cell proliferation and cell cycle control: A
mini review. Int J Clin Pract. 58:1134–1141. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Du Toit A: Cell death: Balance through a
bivalent regulator. Nat Rev Mol Cell Biol. 14:546–547. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|