1
|
Draper L: Breast cancer: Trends, risks,
treatments, and effects. AAOHN J. 54:445–453. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bleicher RJ: Timing and delays in breast
cancer evaluation and treatment. Ann Surg Oncol. 25:2829–2838.
2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Castaneda SA and Strasser J: Updates in
the treatment of breast cancer with radiotherapy. Surg Oncol Clin N
Am. 26:371–382. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Quintela-Fandino M, Soberon N, Lluch A,
Manso L, Calvo I, Cortes J, Moreno-Antón F, Gil-Gil M,
Martinez-Jánez N, Gonzalez-Martin A, et al: Critically short
telomeres and toxicity of chemotherapy in early breast cancer.
Oncotarget. 8:21472–21482. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kuete V, Mbaveng AT, Nono EC, Simo CC,
Zeino M, Nkengfack AE and Efferth T: Cytotoxicity of seven
naturally occurring phenolic compounds towards multi-factorial
drug-resistant cancer cells. Phytomedicine. 23:856–863. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lucas L, Russell A and Keast R: Molecular
mechanisms of inflammation. Anti-inflammatory benefits of virgin
olive oil and the phenolic compound oleocanthal. Curr Pharm Des.
17:754–768. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Petiwala SM and Johnson JJ: Diterpenes
from rosemary (Rosmarinus officinalis): Defining their
potential for anti-cancer activity. Cancer Lett. 367:93–102. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lai CS, Lee JH, Ho CT, Liu CB, Wang JM,
Wang YJ and Pan MH: Rosmanol potently inhibits
lipopolysaccharide-induced iNOS and COX-2 expression through
downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.
J Agric Food Chem. 57:10990–10998. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng AC, Lee MF, Tsai ML, Lai CS, Lee JH,
Ho CT and Pan MH: Rosmanol potently induces apoptosis through both
the mitochondrial apoptotic pathway and death receptor pathway in
human colon adenocarcinoma COLO 205 cells. Food Chem Toxicol.
49:485–493. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tabata K, Kim M, Makino M, Satoh M, Satoh
Y and Suzuki T: Phenolic diterpenes derived from Hyptis incana
induce apoptosis and G(2)/M arrest of neuroblastoma cells.
Anticancer Res. 32:4781–4789. 2012.PubMed/NCBI
|
11
|
Cheng M, Michalski S and Kommagani R: Role
for growth regulation by estrogen in breast cancer 1 (GREB1) in
hormone-dependent cancers. Int J Mol Sci. 19:25432018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mishra AK, Abrahamsson A and Dabrosin C:
Fulvestrant inhibits growth of triple negative breast cancer and
synergizes with tamoxifen in ERα positive breast cancer by
up-regulation of ERβ. Oncotarget. 7:56876–56888. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sharma VR, Gupta GK and Sharma AK, Batra
N, Sharma DK, Joshi A and Sharma AK: PI3K/Akt/mTOR intracellular
pathway and breast cancer: Factors, mechanism and regulation. Curr
Pharm Des. 23:1633–1638. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu M, Qi B, Xiaoxiang W, Xu J and Liu X:
Baicalein increases cisplatin sensitivity of A549 lung
adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed
Pharmacother. 90:677–685. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Voskas D, Ling LS and Woodgett JR: Signals
controlling un-differentiated states in embryonic stem and cancer
cells: Role of the phosphatidylinositol 3′kinase pathway. J Cell
Physiol. 229:1312–1322. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huth HW, Albarnaz JD, Torres AA, Bonjardim
CA and Ropert C: MEK2 controls the activation of MKK3/MKK6-p38 axis
involved in the MDA-MB-231 breast cancer cell survival: Correlation
with cyclin D1 expression. Cell Signal. 28:1283–1291. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Heckler MM, Thakor H, Schafer CC and
Riggins RB: ERK/MAPK regulates ERRγ expression, transcriptional
activity and receptor-mediated tamoxifen resistance in ER+ breast
cancer. FEBS J. 281:2431–2442. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Harrison DA, Binari R, Nahreini TS, Gilman
M and Perrimon N: Activation of a Drosophila Janus kinase (JAK)
causes hematopoietic neoplasia and developmental defects. EMBO J.
14:2857–2865. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Z, Wang F, Du C, Guo H, Ma L, Liu X,
Kornmann M, Tian X and Yang Y: BRM/SMARCA2 promotes the
proliferation and chemoresistance of pancreatic cancer cells by
targeting JAK2/STAT3 signaling. Cancer Lett. 402:213–224. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ho JM, Nguyen MH, Dierov JK, Badger KM,
Beattie BK, Tartaro P, Haq R, Zanke BW, Carroll MP and Barber DL:
TEL-JAK2 constitutively activates the extracellular
signal-regulated kinase (ERK), stress-activated protein/Jun kinase
(SAPK/JNK), and p38 signaling pathways. Blood. 100:1438–1448.
2002.PubMed/NCBI
|
21
|
Nasser MI, Masood M, Wei W and Li X, Zhou
Y, Liu B, Li J and Li X: Cordycepin induces apoptosis in SGC7901
cells through mitochondrial extrinsic phosphorylation of PI3K/Akt
by generating ROS. Int J Oncol. 50:911–919. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang C, Masood M, Rasul A, Wei W, Wang Y,
Ali M, Mustaqeem M, Li J and Li X: Altholactone inhibits NF-κB and
STAT3 activation and induces reactive oxygen species-mediated
apoptosis in prostate cancer DU145 Cells. Molecules. 22:2402017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fan TJ, Han LH, Cong RS and Liang J:
Caspase family proteases and apoptosis. Acta Biochim Biophys Sin
(Shanghai). 37:719–727. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shi Y: Mechanisms of caspase activation
and inhibition during apoptosis. Mol Cell. 9:459–470. 2002.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Marinello PC, da Silva TN, Panis C, Neves
AF, Machado KL, Borges FH, Guarnier FA, Bernardes SS,
de-Freitas-Junior JC, Morgado-Díaz JA, et al: Mechanism of
metformin action in MCF-7 and MDA-MB-231 human breast cancer cells
involves oxidative stress generation, DNA damage, and transforming
growth factor β1 induction. Tumour Biol. 37:5337–5346. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Vrhovac Madunić I, Madunić J, Antunović M,
Paradžik M, Garaj-Vrhovac V, Breljak D, Marijanović I and Gajski G:
Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and
oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells.
Naunyn Schmiedebergs Arch Pharmacol. 391:537–550. 2018. View Article : Google Scholar
|
27
|
Kello M, Takac P, Kubatka P, Kuruc T,
Petrova K and Mojzis J: Oxidative stress-induced DNA damage and
apoptosis in clove buds-treated MCF-7 cells. Biomolecules.
10:1392020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bakhtiari E, Hosseini A and Mousavi SH:
The role of ROS and NF-κB pathway in olmesartan induced-toxicity in
HeLa and mcf-7 cell lines. Biomed Pharmacother. 93:429–434. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Fumarola C, Caffarra C, La Monica S,
Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D,
Petronini PG and Bonelli MA: Effects of sorafenib on energy
metabolism in breast cancer cells: Role of AMPK-mTORC1 signaling.
Breast Cancer Res Treat. 141:67–78. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Haldosén LA, Zhao C and Dahlman-Wright K:
Estrogen receptor beta in breast cancer. Mol Cell Endocrinol.
382:665–672. 2014. View Article : Google Scholar
|
31
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cakir M and Grossman AB: Targeting MAPK
(Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis. Expert
Opin Ther Targets. 13:1121–1134. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee S, Rauch J and Kolch W: Targeting MAPK
signaling in cancer: Mechanisms of drug resistance and sensitivity.
Int J Mol Sci. 21:11022020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Loesch M and Chen G: The p38 MAPK stress
pathway as a tumor suppressor or more? Front Biosci. 13:3581–3593.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang J, Liu Z, Feng X, Gao S, Xu S and Liu
P: Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via
inhibition of AMPK and activation of p38 MAPK signaling. Arch
Biochem Biophys. 562:22–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Martínez-Limón A, Joaquin M, Caballero M,
Posas F and de Nadal E: The p38 pathway: From biology to cancer
therapy. Int J Mol Sci. 21:19132020. View Article : Google Scholar
|
37
|
Yu Z, Du Y, Li H, Huang J, Jiang D, Fan J,
Shen Y, Zhang L, Yu X, Xu N and Ke Q: miR-642 serves as a tumor
suppressor in hepatocellular carcinoma by regulating SEMA4C and p38
MAPK signaling pathway. Oncol Lett. 20:742020.PubMed/NCBI
|
38
|
Hong B, Li H, Zhang M, Xu J, Lu Y, Zheng
Y, Qian J, Chang JT, Yang J and Yi Q: p38 MAPK inhibits breast
cancer metastasis through regulation of stromal expansion. Int J
Cancer. 136:34–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dabir S, Kluge A, Kresak A, Yang M, Fu P,
Groner B, Wildey G and Dowlati A: Low PIAS3 expression in malignant
mesothelioma is associated with increased STAT3 activation and poor
patient survival. Clin Cancer Res. 20:5124–5132. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Aghazadeh S and Yazdanparast R:
Mycophenolic acid potentiates HER2-overexpressing SKBR3 breast
cancer cell line to induce apoptosis: Involvement of AKT/FOXO1 and
JAK2/STAT3 pathways. Apoptosis. 21:1302–1314. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liang W, Guan H, He X, Ke W, Xu L, Liu L,
Xiao H and Li Y: Down-regulation of SOSTDC1 promotes thyroid cancer
cell proliferation via regulating cyclin A2 and cyclin E2.
Oncotarget. 6:31780–31791. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Geng Y, Michowski W, Chick JM, Wang YE,
Jecrois ME, Sweeney KE, Liu L, Han RC, Ke N, Zagozdzon A, et al:
Kinase-independent function of E-type cyclins in liver cancer. Proc
Natl Acad Sci USA. 115:1015–1020. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yam CH, Fung TK and Poon RY: Cyclin A in
cell cycle control and cancer. Cell Mol Life Sci. 59:1317–1326.
2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mehdad A, Brumana G, Souza AA, Barbosa J,
Ventura MM and de Freitas SM: A Bowman-Birk inhibitor induces
apoptosis in human breast adenocarcinoma through mitochondrial
impairment and oxidative damage following proteasome 20S
inhibition. Cell Death Discov. 2:150672016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lim S and Kaldis P: Cdks, cyclins and
CKIs: Roles beyond cell cycle regulation. Development.
140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Timofeev O, Cizmecioglu O, Settele F,
Kempf T and Hoffmann I: Cdc25 phosphatases are required for timely
assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem.
285:16978–16990. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Moulager M, Corellou F, Vergé V, Escande
ML and Bouget FY: Integration of light signals by the
retinoblastoma pathway in the control of S phase entry in the
picophytoplanktonic cell Ostreococcus. PLoS Genet. 56:e10009572010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang M, Shu ZJ, Wang Y and Peng W:
Stachydrine hydrochloride inhibits proliferation and induces
apoptosis of breast cancer cells via inhibition of Akt and ERK
pathways. Am J Transl Res. 9:1834–1844. 2017.PubMed/NCBI
|
49
|
Asati V, Mahapatra DK and Bharti SK:
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as
anticancer agents: Structural and pharmacological perspectives. Eur
J Med Chem. 109:314–341. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sun H, Zheng X, Wang Q, Yan J, Li D, Zhou
Y, Lin Y, Zhang L and Wang X: Concurrent blockade of NF-κB and Akt
pathways potentiates cisplatin's antitumor activity in vivo.
Anticancer Drugs. 23:1039–1046. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pastuszak-Lewandoska D,
Domańska-Senderowska D, Kordiak J, Antczak A, Czarnecka KH,
Migdalska-Sęk M, Nawrot E, Kiszałkiewicz JM and Brzeziańska-Lasota
E: Immunoexpression analysis of selected JAK/STAT pathway molecules
in patients with non-small-cell lung cancer. Pol Arch Intern Med.
127:758–764. 2017.PubMed/NCBI
|
52
|
Yagil Z, Nechushtan H, Kay G, Yang CM,
Kemeny DM and Razin E: The enigma of the role of protein inhibitor
of activated STAT3 (PIAS3) in the immune response. Trends Immunol.
31:199–204. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yang X, Tang Z, Zhang P and Zhang L:
Research advances of JAK/STAT signaling pathway in lung cancer.
Zhongguo Fei Ai Za Zhi. 22:45–51. 2019.(In Chinese). PubMed/NCBI
|
54
|
Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z
and Yang B: JAK/STAT and PI3K/AKT pathways form a mutual
transactivation loop and afford resistance to oxidative
stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem.
21:305–314. 2008. View Article : Google Scholar : PubMed/NCBI
|