Dysregulated expression of claudins in cancer (Review)
- Authors:
- Jian Li
-
Affiliations: Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China - Published online on: July 7, 2021 https://doi.org/10.3892/ol.2021.12902
- Article Number: 641
-
Copyright: © Li . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Furuse M, Sasaki H, Fujimoto K and Tsukita S: A single gene product, claudin-1 or −2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol. 143:391–401. 1998. View Article : Google Scholar : PubMed/NCBI | |
Singh AB, Uppada SB and Dhawan P: Claudin proteins, outside-in signaling, and carcinogenesis. Pflugers Arch. 469:69–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto Y, Tachibana K, Krug SM, Kunisawa J, Fromm M and Kondoh M: Potential for tight junction protein-Directed drug development using claudin binders and angubindin-1. Int J Mol Sci. 20:40162019. View Article : Google Scholar : PubMed/NCBI | |
Schneeberger EE and Lynch RD: The tight junction: A multifunctional complex. Am J Physiol Cell Physiol. 286:C1213–C1228. 2004. View Article : Google Scholar : PubMed/NCBI | |
Niessen CM: Tight junctions/adherens junctions: Basic structure and function. J Invest Dermatol. 127:2525–2532. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meng W and Takeichi M: Adherens junction: Molecular architecture and regulation. Cold Spring Harb Perspect Biol. 1:a0028992009. View Article : Google Scholar : PubMed/NCBI | |
Kottke MD, Delva E and Kowalczyk AP: The desmosome: Cell science lessons from human diseases. J Cell Sci. 119((Pt 5)): 797–806. 2006. View Article : Google Scholar : PubMed/NCBI | |
Farquhar MG and Palade GE: Junctional complexes in various epithelia. J Cell Biol. 17:375–412. 1963. View Article : Google Scholar : PubMed/NCBI | |
Zihni C, Mills C, Matter K and Balda MS: Tight junctions: From simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 17:564–580. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lal-Nag M and Morin PJ: The claudins. Genome Biol. 10:2352009. View Article : Google Scholar : PubMed/NCBI | |
Tsukita S, Tanaka H and Tamura A: The Claudins: From tight junctions to biological systems. Trends Biochem Sci. 44:141–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O and Fujiyoshi Y: Crystal structure of a claudin provides insight into the architecture of tight junctions. Science. 344:304–307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Tani K, Tamura A, Tsukita S and Fujiyoshi Y: Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol. 427:291–297. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S and Fujiyoshi Y: Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science. 347:775–778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shinoda T, Shinya N, Ito K, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Yokoyama S and Shirouzu M: Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep. 6:336322016. View Article : Google Scholar : PubMed/NCBI | |
Nakamura S, Irie K, Tanaka H, Nishikawa K, Suzuki H, Saitoh Y, Tamura A, Tsukita S and Fujiyoshi Y: Morphologic determinant of tight junctions revealed by claudin-3 structures. Nat Commun. 10:8162019. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Weber CR, Raleigh DR, Yu D and Turner JR: Tight junction pore and leak pathways: A dynamic duo. Annu Rev Physiol. 73:283–309. 2011. View Article : Google Scholar : PubMed/NCBI | |
Otani T and Furuse M: Tight junction structure and function revisited. Trends Cell Biol. 30:805–817. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmad R, Kumar B, Chen Z, Chen X, Müller D, Lele SM, Washington MK, Batra SK, Dhawan P and Singh AB: Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling. Oncogene. 36:6592–6604. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Flodby P, Luo J, Castillo DR, Liu Y, Yu FX, McConnell A, Varghese B, Li G, Chimge NO, et al: Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J Clin Invest. 128:970–984. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hagen SJ: Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers. 5:e13278392017. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Kim DH, Fan J, Lu Q, Verbanac K, Ding L, Renegar R and Chen YH: A non-tight junction function of claudin-7-Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol Cancer. 14:1202015. View Article : Google Scholar : PubMed/NCBI | |
Nübel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L and Zöller M: Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res. 7:285–299. 2009. View Article : Google Scholar | |
Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, Beauchamp RD, Singh AB and Dhawan P: Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 63:622–634. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, et al: Systems proteomics view of the endogenous human claudin protein family. J Proteome Res. 15:339–359. 2016. View Article : Google Scholar : PubMed/NCBI | |
Milatz S and Breiderhoff T: One gene, two paracellular ion channels-claudin-10 in the kidney. Pflugers Arch. 469:115–121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Y, Hu D, Gong T, Xu R and Gao J: Analysis of the expression and genetic alteration of CLDN18 in gastric cancer. Aging (Albany NY). 12:14271–14284. 2020. View Article : Google Scholar : PubMed/NCBI | |
Milatz S: A novel claudinopathy based on claudin-10 mutations. Int J Mol Sci. 20:53962019. View Article : Google Scholar : PubMed/NCBI | |
Blanchard AA, Zelinski T, Xie J, Cooper S, Penner C, Leygue E and Myal Y: Identification of claudin 1 transcript variants in human invasive breast cancer. PLoS One. 11:e01633872016. View Article : Google Scholar : PubMed/NCBI | |
Ben-David U, Nudel N and Benvenisty N: Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun. 4:19922013. View Article : Google Scholar : PubMed/NCBI | |
Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, Klein O, Kuna K, Ouchan Y, Wöll S, et al: An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 367:446–453. 2020. View Article : Google Scholar : PubMed/NCBI | |
Erdélyi-Belle B, Török G, Apáti Á, Sarkadi B, Schaff Z, Kiss A and Homolya L: Expression of tight junction components in hepatocyte-like cells differentiated from human embryonic stem cells. Pathol Oncol Res. 21:1059–1070. 2015. View Article : Google Scholar | |
Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T and Sawada N: Differential expression and subcellular localization of claudin-7, −8, −12, −13, and −15 along the mouse intestine. J Histochem Cytochem. 54:933–944. 2006. View Article : Google Scholar : PubMed/NCBI | |
D'Souza T, Sherman-Baust CA, Poosala S, Mullin JM and Morin PJ: Age-related changes of claudin expression in mouse liver, kidney, and pancreas. J Gerontol A Biol Sci Med Sci. 64:1146–1153. 2009. View Article : Google Scholar | |
Perdomo-Ramirez A, Aguirre M, Davitaia T, Ariceta G, Ramos-Trujillo E; RenalTube Group, ; Claverie-Martin F: Characterization of two novel mutations in the claudin-16 and claudin-19 genes that cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Gene. 689:227–234. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ouban A: Claudin-1 role in colon cancer: An update and a review. Histol Histopathol. 33:1013–1019. 2018.PubMed/NCBI | |
Wang K, Xu C, Li W and Ding L: Emerging clinical significance of claudin-7 in colorectal cancer: A review. Cancer Manag Res. 10:3741–3752. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK and Beauchamp RD: Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 115:1765–1776. 2005. View Article : Google Scholar : PubMed/NCBI | |
Blanchard AA, Skliris GP, Watson PH, Murphy LC, Penner C, Tomes L, Young TL, Leygue E and Myal Y: Claudins 1, 3, and 4 protein expression in ER negative breast cancer correlates with markers of the basal phenotype. Virchows Arch. 454:647–656. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cherradi S, Ayrolles-Torro A, Vezzo-Vié N, Gueguinou N, Denis V, Combes E, Boissière F, Busson M, Canterel-Thouennon L, Mollevi C, et al: Antibody targeting of claudin-1 as a potential colorectal cancer therapy. J Exp Clin Cancer Res. 36:892017. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka T, Mitomi H, Fukui N, Kanazawa H, Saito T, Hayashi T and Yao T: Cluster analysis of claudin-1 and −4, E-cadherin, and β-catenin expression in colorectal cancers. J Surg Oncol. 103:674–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhat AA, Ahmad R, Uppada SB, Singh AB and Dhawan P: Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res. 349:119–127. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bornholdt J, Friis S, Godiksen S, Poulsen SS, Santoni-Rugiu E, Bisgaard HC, Lothe IM, Ikdahl T, Tveit KM, Johnson E, et al: The level of claudin-7 is reduced as an early event in colorectal carcinogenesis. BMC Cancer. 11:652011. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Shibahara J, Fukushima N, Shinozaki A, Umeda M, Ishikawa S, Kokudo N and Fukayama M: Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J Histochem Cytochem. 59:942–952. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stratton MR: Exploring the genomes of cancer cells: Progress and promise. Science. 331:1553–1558. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A, Santos A and Lopez-Bigas N: IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods. 10:1081–1082. 2013. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, et al: A compendium of mutational cancer driver genes. Nat Rev Cancer. 20:555–572. 2020. View Article : Google Scholar | |
Paschoud S, Bongiovanni M, Pache JC and Citi S: Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol. 20:947–954. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schaefer MH and Serrano L: Cell type-specific properties and environment shape tissue specificity of cancer genes. Sci Rep. 6:207072016. View Article : Google Scholar : PubMed/NCBI | |
Honda H, Pazin MJ, D'Souza T, Ji H and Morin PJ: Regulation of the CLDN3 gene in ovarian cancer cells. Cancer Biol Ther. 6:1733–1742. 2007. View Article : Google Scholar : PubMed/NCBI | |
Di Cello F, Cope L, Li H, Jeschke J, Wang W, Baylin SB and Zahnow CA: Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer. PLoS One. 8:e686302013. View Article : Google Scholar : PubMed/NCBI | |
Chiang SK, Chang WC, Chen SE and Chang LC: DOCK1 regulates growth and motility through the RRP1B-claudin-1 pathway in claudin-low breast cancer cells. Cancers (Basel). 11:17622019. View Article : Google Scholar : PubMed/NCBI | |
Li CP, Cai MY, Jiang LJ, Mai SJ, Chen JW, Wang FW, Liao YJ, Chen WH, Jin XH, Pei XQ, et al: CLDN14 is epigenetically silenced by EZH2-mediated H3K27ME3 and is a novel prognostic biomarker in hepatocellular carcinoma. Carcinogenesis. 37:557–566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Estrada OM, Cullerés A, Soriano FX, Peinado H, Bolós V, Martínez FO, Reina M, Cano A, Fabre M and Vilaró S: The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J. (394(Pt 2)): 449–457. 2006. View Article : Google Scholar | |
Bhat AA, Sharma A, Pope J, Krishnan M, Washington MK, Singh AB and Dhawan P: Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PLoS One. 7:e371742012. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Cen J, Li J, Zhao R, Zhu C, Wang Z, Xie J and Tang W: Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adh Migr. 9:495–501. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kohno Y, Okamoto T, Ishibe T, Nagayama S, Shima Y, Nishijo K, Shibata KR, Fukiage K, Otsuka S, Uejima D, et al: Expression of claudin7 is tightly associated with epithelial structures in synovial sarcomas and regulated by an Ets family transcription factor, ELF3. J Biol Chem. 281:38941–38950. 2006. View Article : Google Scholar : PubMed/NCBI | |
Farkas AE, Hilgarth RS, Capaldo CT, Gerner-Smidt C, Powell DR, Vertino PM, Koval M, Parkos CA and Nusrat A: HNF4alpha regulates claudin-7 protein expression during intestinal epithelial differentiation. Am J Pathol. 185:2206–2218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baltzegar DA, Reading BJ, Brune ES and Borski RJ: Phylogenetic revision of the claudin gene family. Mar Genomics. 11:17–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Honda H, Pazin MJ, Ji H, Wernyj RP and Morin PJ: Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J Biol Chem. 281:21433–21444. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li CF, Chen JY, Ho YH, Hsu WH, Wu LC, Lan HY, Hsu DS, Tai SK, Chang YC and Yang MH: Snail-induced claudin-11 prompts collective migration for tumour progression. Nat Cell Biol. 21:251–262. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Yang J, Zhang Y, Zhou Z, Cui X, Zhang L, Fung KM, Zheng W, Allard FD, Yee EU, et al: ZIP4 promotes pancreatic cancer progression by repressing ZO-1 and claudin-1 through a ZEB1-dependent transcriptional mechanism. Clin Cancer Res. 24:3186–3196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Cui S, Fu X, Liu C, Wang Z and Liu Y: MicroRNA-146-5p promotes proliferation, migration and invasion in lung cancer cells by targeting claudin-12. Cancer Biomark. 25:89–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang YB, Shi Q, Li G, Zheng JH, Lin J and Qiu W: MicroRNA-488 inhibits progression of colorectal cancer via inhibition of the mitogen-activated protein kinase pathway by targeting claudin-2. Am J Physiol Cell Physiol. 316:C33–C47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Cui C, Xiao F, Wang H, Xu J, Shi X, Yang Y, Zhang Q, Zheng X, Yang X, et al: MiR-486 regulates metastasis and chemosensitivity in hepatocellular carcinoma by targeting CLDN10 and CITRON. Hepatol Res. 45:1312–1322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang SJ, Feng JF, Wang L, Guo W, Du YW, Ming L and Zhao GQ: MiR-1303 targets claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Dig Dis Sci. 59:1754–1763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng B, Rong A, Zhou Q and Li W: LncRNA LINC00662 promotes colon cancer tumor growth and metastasis by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway. J Exp Clin Cancer Res. 39:52020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XZ, Mao HL, Zhang SJ, Sun L, Zhang WJ, Chen QZ, Wang L and Liu HC: lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through miR-135b suppression to promote CLDN11 expression. Life Sci. 249:1174782020. View Article : Google Scholar : PubMed/NCBI | |
Krishnan M, Singh AB, Smith JJ, Sharma A, Chen X, Eschrich S, Yeatman TJ, Beauchamp RD and Dhawan P: HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene. 29:305–312. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Moodie A, Blanchard AA, Leygue E and Myal Y: Claudin 1 in breast cancer: New insights. J Clin Med. 4:1960–1976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Kamata R and Sakai R: EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem. 280:42375–42382. 2005. View Article : Google Scholar : PubMed/NCBI | |
Owari T, Sasaki T, Fujii K, Fujiwara-Tani R, Kishi S, Mori S, Mori T, Goto K, Kawahara I, Nakai Y, et al: Role of nuclear claudin-4 in renal cell carcinoma. Int J Mol Sci. 21:83402020. View Article : Google Scholar : PubMed/NCBI | |
Heiler S, Mu W, Zöller M and Thuma F: The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal. 13:292015. View Article : Google Scholar : PubMed/NCBI | |
Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J and He Q: ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 10:1426–1439. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mandel I, Paperna T, Volkowich A, Merhav M, Glass-Marmor L and Miller A: The ubiquitin-proteasome pathway regulates claudin 5 degradation. J Cell Biochem. 113:2415–2423. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Wang J, Yang J, Gonzales E, Perez R and Hou J: KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc Natl Acad Sci USA. 112:4340–4345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Willemsen LE, Hoetjes JP, van Deventer SJ and van Tol EA: Abrogation of IFN-gamma mediated epithelial barrier disruption by serine protease inhibition. Clin Exp Immunol. 142:275–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lytle NK, Barber AG and Reya T: Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 18:669–680. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rahner C, Mitic LL and Anderson JM: Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. 120:411–422. 2001. View Article : Google Scholar : PubMed/NCBI | |
Paquet-Fifield S, Koh SL, Cheng L, Beyit LM, Shembrey C, Mølck C, Behrenbruch C, Papin M, Gironella M, Guelfi S, et al: Tight junction protein claudin-2 promotes self-renewal of human colorectal cancer stem-like cells. Cancer Res. 78:2925–2938. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G, Huber C and Türeci O: Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res. 14:7624–7634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Akizuki R, Maruhashi R, Eguchi H, Kitabatake K, Tsukimoto M, Furuta T, Matsunaga T, Endo S and Ikari A: Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochim Biophys Acta Mol Cell Res. 1865:769–780. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kyuno D, Kojima T, Yamaguchi H, Ito T, Kimura Y, Imamura M, Takasawa A, Murata M, Tanaka S, Hirata K and Sawada N: Protein kinase Cα inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis. 34:1232–1243. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, et al: Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA. 104:18636–18641. 2007. View Article : Google Scholar : PubMed/NCBI | |
Akimoto T, Takasawa A, Takasawa K, Aoyama T, Murata M, Osanai M, Saito T and Sawada N: Estrogen/GPR30 signaling contributes to the malignant potentials of ER-negative cervical adenocarcinoma via regulation of claudin-1 expression. Neoplasia. 20:1083–1093. 2018. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Konno T, Kohno T, Shimada H, Saito K, Satohisa S, Saito T and Kojima T: Possibility of targeting claudin-2 in therapy for human endometrioid endometrial carcinoma. Reprod Sci. 27:2092–2103. 2020. View Article : Google Scholar : PubMed/NCBI | |
Domazetovic V, Iantomasi T, Bonanomi AG and Stio M: Vitamin D regulates claudin-2 and claudin-4 expression in active ulcerative colitis by p-Stat-6 and Smad-7 signaling. Int J Colorectal Dis. 35:1231–1242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mattern J, Roghi CS, Hurtz M, Knäuper V, Edwards DR and Poghosyan Z: ADAM15 mediates upregulation of claudin-1 expression in breast cancer cells. Sci Rep. 9:125402019. View Article : Google Scholar : PubMed/NCBI | |
Kim WK, Kwon Y, Jang M, Park M, Kim J, Cho S, Jang DG, Lee WB, Jung SH, Choi HJ, et al: β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Sci Rep. 9:184402019. View Article : Google Scholar : PubMed/NCBI | |
Rachakonda G, Vu T, Jin L, Samanta D and Datta PK: Role of TGF-β-induced Claudin-4 expression through c-Jun signaling in non-small cell lung cancer. Cell Signal. 28:1537–1544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, You ML, Chong QY, Pandey V, Zhuang QS, Liu DX, Ma L, Zhu T and Lobie PE: Autocrine human growth hormone promotes invasive and cancer stem cell-like behavior of hepatocellular carcinoma cells by STAT3 dependent inhibition of CLAUDIN-1 expression. Int J Mol Sci. 18:12742017. View Article : Google Scholar : PubMed/NCBI | |
Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG, Fukamachi H and Ito Y: Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology. 138:255–265.e1-3. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ashikari D, Takayama KI, Obinata D, Takahashi S and Inoue S: CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci. 108:1386–1393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mima S, Tsutsumi S, Ushijima H, Takeda M, Fukuda I, Yokomizo K, Suzuki K, Sano K, Nakanishi T, Tomisato W, et al: Induction of claudin-4 by nonsteroidal anti-inflammatory drugs and its contribution to their chemopreventive effect. Cancer Res. 65:1868–1876. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iitaka D, Moodley S, Shimizu H, Bai XH and Liu M: PKCδ-iPLA2-PGE2-PPARγ signaling cascade mediates TNF-α induced Claudin 1 expression in human lung carcinoma cells. Cell Signal. 27:568–577. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morin PJ: Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 65:9603–9606. 2005. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Toom S and Huang Y: Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J Hematol Oncol. 10:1052017. View Article : Google Scholar : PubMed/NCBI |