Relationship between p53 status and the bioeffect of ionizing radiation (Review)
- Authors:
- Xiaohan Kong
- Dehai Yu
- Zhaoyi Wang
- Sijie Li
-
Affiliations: Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China, Department of Gastrointestinal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China - Published online on: July 14, 2021 https://doi.org/10.3892/ol.2021.12922
- Article Number: 661
-
Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lane DP and Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature. 278:261–263. 1979. View Article : Google Scholar : PubMed/NCBI | |
Linzer DI and Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 17:43–52. 1979. View Article : Google Scholar : PubMed/NCBI | |
Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O and Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA. 86:8763–8767. 1989. View Article : Google Scholar : PubMed/NCBI | |
Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, et al: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244:217–221. 1989. View Article : Google Scholar : PubMed/NCBI | |
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 281:1677–1679. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Guo Y, Liu X, Czauderna F, Carr MI, Zenke FT, Blaukat A and Vassilev LT: Therapeutic implications of p53 status on cancer cell fate following exposure to ionizing radiation and the DNA-PK inhibitor M3814. Mol Cancer Res. 17:2457–2468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui D, Xiong X, Shu J, Dai X, Sun Y and Zhao Y: FBXW7 confers radiation survival by targeting p53 for degradation. Cell Rep. 30:497–509.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Venkata Narayanan I, Paulsen MT, Bedi K, Berg N, Ljungman EA, Francia S, Veloso A, Magnuson B, di Fagagna FD, Wilson TE and Ljungman M: Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep. 7:435982017. View Article : Google Scholar : PubMed/NCBI | |
Marcel V, Catez F and Diaz JJ: p53, a translational regulator: Contribution to its tumour-suppressor activity. Oncogene. 34:5513–5523. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T and Yanaga K: Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett. 370:177–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bechill J, Zhong R, Zhang C, Solomaha E and Spiotto MT: A high-throughput cell-based screen identified a 2-[(E)-2-Phenylvinyl]-8-quinolinol core structure that activates p53. PLoS One. 11:e01541252016. View Article : Google Scholar : PubMed/NCBI | |
Uehara I and Tanaka N: Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression. Cancers (Basel). 10:2192018. View Article : Google Scholar : PubMed/NCBI | |
Menon V and Povirk L: Involvement of p53 in the repair of DNA double strand breaks: Multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell Biochem. 85:321–336. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moulder DE, Hatoum D, Tay E, Lin Y and McGowan EM: The roles of p53 in mitochondrial dynamics and cancer metabolism: The pendulum between survival and death in breast cancer? Cancers (Basel). 10:1892018. View Article : Google Scholar : PubMed/NCBI | |
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, et al: The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res. 46:804–822. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kamp WM, Wang PY and Hwang PM: TP53 mutation, mitochondria and cancer. Curr Opin Genet Dev. 38:16–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y and Fu X: Mutant p53 in cancer progression and targeted therapies. Front Oncol. 10:5951872020. View Article : Google Scholar : PubMed/NCBI | |
Long S, Loureiro JB, Carvalho C, Gales L, Saraiva L, Pinto MMM, Puthongking P and Sousa E: Semi-synthesis of small molecules of aminocarbazoles: Tumor growth inhibition and potential impact on p53. Molecules. 26:16372021. View Article : Google Scholar : PubMed/NCBI | |
Olotu FA and Soliman MES: Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. J Cell Biochem. 120:951–966. 2019. View Article : Google Scholar : PubMed/NCBI | |
Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P and Olivier M: TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mantovani F, Collavin L and Del Sal G: Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
Milner J, Medcalf EA and Cook AC: Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol Cell Biol. 11:12–19. 1991. View Article : Google Scholar : PubMed/NCBI | |
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E and García-Carrancá A: Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol. 8:6076702021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang J, Tong JHM, Chan AWH, Yu J, Kang W and To KF: Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int J Mol Sci. 20:59992019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, et al: PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res. 68:1723–1731. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Li K, Yao X, Wang H, Li W, Wu J, Li M, Zhou R, Xu L and Zhao L: A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumour growth and chemoresistance in gastric cancer. EBioMedicine. 44:311–321. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vaughan CA, Singh S, Windle B, Sankala HM, Graves PR, Andrew Yeudall W, Deb SP and Deb S: p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch Biochem Biophys. 518:79–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Pickering CR, Holst CR, Gauthier ML and Tlsty TD: p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res. 66:10325–10331. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gaiddon C, Lokshin M, Ahn J, Zhang T and Prives C: A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 21:1874–1887. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, et al: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 119:861–872. 2004. View Article : Google Scholar : PubMed/NCBI | |
Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI | |
Marusyk A, Porter CC, Zaberezhnyy V and DeGregori J: Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 8:e10003242010. View Article : Google Scholar : PubMed/NCBI | |
Wouters A, Pauwels B, Lambrechts HA, Pattyn GG, Ides J, Baay M, Meijnders P, Peeters M, Vermorken JB and Lardon F: Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells. Int J Radiat Oncol Biol Phys. 80:558–566. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tchelebi L, Ashamalla H and Graves PR: Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem. 85:133–159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Orrego JM and Sahani DV: Low-dose CT in clinical diagnostics. Expert Opin Med Diagn. 7:501–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EK and Yeo ELL: Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett. 511:56–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Guo E, Ming J, Sun W, Nie X, Sun L, Peng S, Luo M, Liu D, Zhang L, et al: Radiation-induced DNMT3B promotes radioresistance in nasopharyngeal carcinoma through methylation of p53 and p21. Mol Ther Oncolytics. 17:306–319. 2020. View Article : Google Scholar : PubMed/NCBI | |
da Costa Araldi IC, Bordin FPR, Cadoná FC, Barbisan F, Azzolin VF, Teixeira CF, Baumhardt T, da Cruz IBM, Duarte MMMF and Bauermann LF: The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem Biol Interact. 282:85–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fei P and El-Deiry WS: P53 and radiation responses. Oncogene. 22:5774–5783. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gudkov AV and Komarova EA: The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 3:117–129. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brachman DG, Beckett M, Graves D, Haraf D, Vokes E and Weichselbaum RR: p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res. 53:3667–3669. 1993.PubMed/NCBI | |
Hinata N, Shirakawa T, Zhang Z, Matsumoto A, Fujisawa M, Okada H, Kamidono S and Gotoh A: Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type-p53 but not in p53-mutated bladder cancer cells. Urol Res. 31:387–396. 2003. View Article : Google Scholar : PubMed/NCBI | |
Williams KJ, Boyle JM, Birch JM, Norton JD and Scott D: Cell cycle arrest defect in Li-Fraumeni Syndrome: A mechanism of cancer predisposition? Oncogene. 14:277–282. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro JC, Barnetson AR, Fisher RJ, Mameghan H and Russell PJ: Relationship between radiation response and p53 status in human bladder cancer cells. Int J Radiat Biol. 72:11–20. 1997. View Article : Google Scholar : PubMed/NCBI | |
Biard DS, Martin M, Rhun YL, Duthu A, Lefaix JL, May E and May P: Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res. 54:3361–3364. 1994.PubMed/NCBI | |
Kawashima K, Mihara K, Usuki H, Shimizu N and Namba M: Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int J Cancer. 61:76–79. 1995. View Article : Google Scholar : PubMed/NCBI | |
Weber KJ and Wenz F: p53, apoptosis and radiosensitivity-experimental and clinical data. Onkologie. 25:136–141. 2002.PubMed/NCBI | |
Concin N, Zeillinger C, Stimpfel M, Schiebel I, Tong D, Wolff U, Reiner A, Leodolter S and Zeillinger R: p53-dependent radioresistance in ovarian carcinoma cell lines. Cancer Lett. 150:191–199. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Kong D, Hou X, Liang B, He M, Liang N, Ma S and Liu X: The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis. Cancer Biother Radiopharm. 28:153–159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, Chiang Y and Chang EH: p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene. 14:1735–1746. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gallardo D, Drazan KE and McBride WH: Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res. 56:4891–4893. 1996.PubMed/NCBI | |
Servomaa K, Kiuru A, Grénman R, Pekkola-Heino K, Pulkkinen JO and Rytömaa T: p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif. 29:219–230. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and Jacks T: p53 status and the efficacy of cancer therapy in vivo. Science. 266:807–810. 1994. View Article : Google Scholar : PubMed/NCBI | |
Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP and Hall PA: The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54:614–617. 1994.PubMed/NCBI | |
Matsui Y, Tsuchida Y and Keng PC: Effects of p53 mutations on cellular sensitivity to ionizing radiation. Am J Clin Oncol. 24:486–490. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shi Q, Sutariya V, Varghese Gupta S and Bhatia D: GADD45α-targeted suicide gene therapy driven by synthetic CArG promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation regardless of p53 status. Onco Targets Ther. 12:3161–3170. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cuneo KC, Morgan MA, Davis MA, Parcels LA, Parcels J, Karnak D, Ryan C, Liu N, Maybaum J and Lawrence TS: Wee1 kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma regardless of TP53 mutational status through induction of replication stress. Int J Radiat Oncol Biol Phys. 95:782–790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tada M, Matsumoto R, Iggo RD, Onimaru R, Shirato H, Sawamura Y and Shinohe Y: Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res. 58:1793–1797. 1998.PubMed/NCBI | |
Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA and Sidransky D: p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 88:1580–1586. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mello SS and Attardi LD: Not all p53 gain-of-function mutants are created equal. Cell Death Differ. 20:855–857. 2013. View Article : Google Scholar : PubMed/NCBI | |
Menendez D, Inga A and Resnick MA: The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol. 26:2297–2308. 2006. View Article : Google Scholar : PubMed/NCBI | |
Okaichi K, Wang LH, Ihara M and Okumura Y: Sensitivity to ionizing radiation in Saos-2 cells transfected with mutant p53 genes depends on the mutation position. J Radiat Res. 39:111–118. 1998. View Article : Google Scholar : PubMed/NCBI | |
Okaichi K, Nose K, Kotake T, Izumi N and Kudo T: Phosphorylation of p53 modifies sensitivity to ionizing radiation. Anticancer Res. 31:2255–2258. 2011.PubMed/NCBI | |
Okaichi K, Ide-Kanematsu M, Izumi N, Morita N, Okumura Y and Ihara M: Variations in sensitivity to ionizing radiation in relation to p53 mutation point. Anticancer Res. 28:2687–2690. 2008.PubMed/NCBI | |
Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA and Keng PC: p53 modulates radiation sensitivity independent of p21 transcriptional activation. Am J Clin Oncol. 28:43–50. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brosh R and Rotter V: When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer. 9:701–713. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stein Y, Rotter V and Aloni-Grinstein R: Gain-of-function mutant p53: All the roads lead to tumorigenesis. Int J Mol Sci. 20:61972019. View Article : Google Scholar : PubMed/NCBI | |
Bellazzo A, Sicari D, Valentino E, Del Sal G and Collavin L: Complexes formed by mutant p53 and their roles in breast cancer. Breast Cancer (Dove Med Press). 10:101–112. 2018.PubMed/NCBI | |
Zhang C, Liu J, Xu D, Zhang T, Hu W and Feng Z: Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zhang Y, Tang Y, Butler N, Kim J, Guessous F, Schiff D, Mandell J and Abounader R: A novel PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent oncogenic effects of PTEN with implications for cancer prognosis and therapy. Neoplasia. 15:952–965. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C, et al: PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res. 26:2956–2971. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Lee WH, Seong D, An JH, Je HU, Nam HY, Kim SY, Kim SW and Han MW: The role of CIP2A as a therapeutic target of rapamycin in radioresistant head and neck cancer with TP53 mutation. Head Neck. 41:3362–3371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T and Kano E: Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res. 155:387–396. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bajan S and Hutvagner G: RNA-based therapeutics: From antisense oligonucleotides to miRNAs. Cells. 9:1372020. View Article : Google Scholar : PubMed/NCBI | |
Bajan S and Hutvagner G: Regulation of miRNA processing and miRNA mediated gene repression in cancer. Microrna. 3:10–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Adams BD, Parsons C, Walker L, Zhang WC and Slack FJ: Targeting noncoding RNAs in disease. J Clin Invest. 127:761–771. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hermeking H: p53 enters the microRNA world. Cancer Cell. 12:414–418. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balça-Silva J, Sousa Neves S, Gonçalves AC, Abrantes AM, Casalta-Lopes J, Botelho MF, Sarmento-Ribeiro AB and Silva HC: Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res. 32:1603–1609. 2012. | |
Liu Y, Xing R, Zhang X, Dong W, Zhang J, Yan Z, Li W, Cui J and Lu Y: miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair (Amst). 12:741–750. 2013. View Article : Google Scholar : PubMed/NCBI | |
He J, Feng X, Hua J, Wei L, Lu Z, Wei W, Cai H, Wang B, Shi W, Ding N, et al: miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycle. 16:1943–1953. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Li H, Wu S, Qu J, Yuan H, Zhou Y and Lu Q: MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int Urol Nephrol. 51:1771–1779. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ye C, Sun NX, Ma Y, Zhao Q, Zhang Q, Xu C, Wang SB, Sun SH, Wang F and Li W: MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS Lett. 589:702–709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song L, Liu S, Zeng S, Zhang L and Li X: miR-375 modulates radiosensitivity of HR-HPV-positive cervical cancer cells by targeting UBE3A through the p53 pathway. Med Sci Monit. 21:2210–2217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar A and Chandna S: Evidence for a radiation-responsive ‘p53 gateway’ contributing significantly to the radioresistance of lepidopteran insect cells. Sci Rep. 8:22018. View Article : Google Scholar : PubMed/NCBI | |
Metheetrairut C and Slack FJ: MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 23:12–19. 2013. View Article : Google Scholar : PubMed/NCBI | |
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack FJ: RAS is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI | |
Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, Harris CC, Mitchell JB and Simone NL: Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One. 6:e244292011. View Article : Google Scholar : PubMed/NCBI | |
Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu H, Shi L, Yu X, Gu Y and Sun X: LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle. 17:439–447. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Yang Y, An W, Xu J, Zhang G, Jie J and Zhang Q: The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol. 32:837–845. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wang L, He X, Zhang J, Zhu Z, Zhang M and Li X: lncRNA CCAT2 promotes radiotherapy resistance for human esophageal carcinoma cells via the miR-145/p70S6K1 and p53 pathway. Int J Oncol. 56:327–336. 2020.PubMed/NCBI | |
Beer L, Nemec L, Wagner T, Ristl R, Altenburger LM, Ankersmit HJ and Mildner M: Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. J Radiat Res. 58:201–209. 2017. View Article : Google Scholar : PubMed/NCBI |