Repurposing non‑invasive prenatal testing data: Population study of single nucleotide variants associated with colorectal cancer and Lynch syndrome
- Authors:
- Natalia Forgacova
- Juraj Gazdarica
- Jaroslav Budis
- Jan Radvanszky
- Tomas Szemes
-
Affiliations: Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia, Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia - Published online on: September 13, 2021 https://doi.org/10.3892/ol.2021.13040
- Article Number: 779
-
Copyright: © Forgacova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Global Cancer Observatory, . International Agency for Research on Cancer. (Lyon, France). 2020.https://gco.iarc.fr/today/data/factsheets/populations/703-slovakia-fact-sheets.pdfNovember 9–2020 | |
Thanikachalam K and Khan G: Colorectal cancer and nutrition. Nutrients. 11:1642019. View Article : Google Scholar : PubMed/NCBI | |
Rawla P, Sunkara T and Barsouk A: Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol. 14:89–103. 2019.PubMed/NCBI | |
Cai S, Li Y, Ding Y, Chen K and Jin M: Alcohol drinking and the risk of colorectal cancer death: A meta-analysis. Eur J Cancer Prev. 23:532–539. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dashti SG, Buchanan DD, Jayasekara H, Ouakrim DA, Clendenning M, Rosty C, Winship IM, Macrae FA, Giles GG, Parry S, et al: Alcohol consumption and the risk of colorectal cancer for mismatch repair gene mutation carriers. Cancer Epidemiol Biomarkers Prev. 26:366–375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB and Maisonneuve P: Smoking and colorectal cancer: A meta-analysis. JAMA. 300:2765–2778. 2008. View Article : Google Scholar : PubMed/NCBI | |
Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, et al: Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 102:1012–1022. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ordóñez-Mena JM, Walter V, Schöttker B, Jenab M, O'Doherty MG, Kee F, Bueno-de-Mesquita B, Peeters PH, Stricker BH, Ruiter R, et al: Impact of prediagnostic smoking and smoking cessation on colorectal cancer prognosis: A meta-analysis of individual patient data from cohorts within the CHANCES consortium. Ann Oncol. 29:472–483. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thrift AP, Gong J, Peters U, Chang-Claude J, Rudolph A, Slattery ML, Chan AT, Locke AE, Kahali B, Justice AE, et al: Mendelian randomization study of body mass index and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 24:1024–1031. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gharahkhani P, Ong JS, An J, Law MH, Whiteman DC, Neale RE and MacGregor S: Effect of increased body mass index on risk of diagnosis or death from cancer. Br J Cancer. 120:565–570. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai Q, Zeng C, Schmit SL, Shin A, Matsuo K, et al: Large-scale genome-wide association study of east asians identifies loci associated with risk for colorectal cancer. Gastroenterology. 156:1455–1466. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Matsuda K, Jia WH, Chang J, Kweon SS, Xiang YB, Shin A, Jee SH, Kim DH, Zhang B, et al: Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology. 150:1633–1645. 2016. View Article : Google Scholar : PubMed/NCBI | |
Al-Tassan NA, Whiffin N, Hosking FJ, Palles C, Farrington SM, Dobbins SE, Harris R, Gorman M, Tenesa A, Meyer BF, et al: A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep. 5:104422015. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Jia WH, Matsuda K, Kweon SS, Matsuo K, Xiang YB, Shin A, Jee SH, Kim DH, Cai Q, et al: Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat Genet. 46:533–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Sugimachi K, Yamamoto K, Niida A, Shimamura T, Sato T, Watanabe M, Tanaka J, Kudo S, Sugihara K, et al: Japanese genome-wide association study identifies a significant colorectal cancer susceptibility locus at chromosome 10p14. Cancer Sci. 108:2239–2247. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, Qu C, Melas M, Van Den Berg DJ, Wang H, et al: Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst. 111:146–157. 2019. View Article : Google Scholar : PubMed/NCBI | |
Biller LH, Syngal S and Yurgelun MB: Recent advances in lynch syndrome. Fam Cancer. 18:211–219. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yurgelun MB and Hampel H: Recent advances in lynch syndrome: Diagnosis, treatment, and cancer prevention. Am Soc Clin Oncol Educ Book. 38:101–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Møller P, Seppälä T, Bernstein I, Holinski-Feder E, Sala P, Evans DG, Lindblom A, Macrae F, Blanco I, Sijmons R, et al: Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: A report from the prospective lynch syndrome database. Gut. 66:1657–1664. 2017. View Article : Google Scholar : PubMed/NCBI | |
Møller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Evans DG, Lindblom A, Macrae F, Blanco I, Sijmons RH, et al: Cancer risk and survival in carriers by gene and gender up to 75 years of age: A report from the prospective lynch syndrome database. Gut. 67:1306–1316. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soares BL, Brant AC, Gomes R, Pastor T, Schneider NB, Ribeiro-Dos-Santos Â, de Assumpção PP, Achatz MI, Ashton-Prolla P and Moreira MA: Screening for germline mutations in mismatch repair genes in patients with lynch syndrome by next generation sequencing. Fam Cancer. 17:387–394. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cox VL, Bamashmos AA, Foo WC, Gupta S, Yedururi S, Garg N and Kang HC: Lynch syndrome: Genomics update and imaging review. Radiographics. 38:483–499. 2018. View Article : Google Scholar : PubMed/NCBI | |
Le S, Ansari U, Mumtaz A, Malik K, Patel P, Doyle A and Khachemoune A: Lynch syndrome and muir-torre syndrome: An update and review on the genetics, epidemiology, and management of two related disorders. Dermatol Online J. 23:130302017. | |
Peltomäki P: Update on lynch syndrome genomics. Fam Cancer. 15:385–393. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duraturo F, Liccardo R, Cavallo A, De Rosa M, Grosso M and Izzo P: Association of low-risk MSH3 and MSH2 variant alleles with Lynch syndrome: Probability of synergistic effects. Int J Cancer. 129:1643–1650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuiper RP, Vissers LELM, Venkatachalam R, Bodmer D, Hoenselaar E, Goossens M, Haufe A, Kamping E, Niessen RC, Hogervorst FB, et al: Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum Mutat. 32:407–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shah SN, Hile SE and Eckert KA: Defective mismatch repair, microsatellite mutation bias, and variability in clinical cancer phenotypes. Cancer Res. 70:431–435. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martin-Morales L, Rofes P, Diaz-Rubio E, Llovet P, Lorca V, Bando I, Perez-Segura P, de la Hoya M, Garre P, Garcia-Barberan V and Caldes T: Novel genetic mutations detected by multigene panel are associated with hereditary colorectal cancer predisposition. PLoS One. 13:e02038852018. View Article : Google Scholar : PubMed/NCBI | |
Budis J, Gazdarica J, Radvanszky J, Harsanyova M, Gazdaricova I, Strieskova L, Frno R, Duris F, Minarik G, Sekelska M, et al: Non-invasive prenatal testing as a valuable source of population specific allelic frequencies. J Biotechnol. 299:72–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pös O, Budis J, Kubiritova Z, Kucharik M, Duris F, Radvanszky J and Szemes T: Identification of structural variation from NGS-Based non-invasive prenatal testing. Int J Mol Sci. 20:44032019. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R, et al: Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell. 175:347–359. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tran NH, Vo TB, Nguyen VT, Tran NT, Trinh THN, Pham HAT, Dao THT, Nguyen NM, Van YLT, Tran VU, et al: Genetic profiling of Vietnamese population from large-scale genomic analysis of non-invasive prenatal testing data. Sci Rep. 10:191422020. View Article : Google Scholar : PubMed/NCBI | |
Pös O, Budiš J and Szemes T: Recent trends in prenatal genetic screening and testing. F1000Res. 8:F10002019. View Article : Google Scholar : PubMed/NCBI | |
Minarik G, Repiska G, Hyblova M, Nagyova E, Soltys K, Budis J, Duris F, Sysak R, Bujalkova MG, Vlkova-Izrael B, et al: Utilization of benchtop next generation sequencing platforms ion torrent PGM and MiSeq in noninvasive prenatal testing for chromosome 21 trisomy and testing of impact of in silico and physical size selection on its analytical performance. PLoS One. 10:e01448112015. View Article : Google Scholar : PubMed/NCBI | |
Beyene J and Pare G: Statistical genetics with application to population-based study design: A primer for clinicians. Eur Heart J. 35:495–500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Huang Y, Fang X, Liu C, Deng W, Zhong C, Xu J, Xu D and Yuan Y: A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn. 20:225–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yurgelun MB, Allen B, Kaldate RR, Bowles KR, Judkins T, Kaushik P, Roa BB, Wenstrup RJ, Hartman AR and Syngal S: Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology. 149:604–613. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, et al: Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med. 69:10–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Budiš J, Kucharík M, Ďuriš F, Gazdarica J, Zrubcová M, Ficek A, Szemes T, Brejová B and Radvanszky J: Dante: Genotyping of known complex and expanded short tandem repeats. Bioinformatics. 35:1310–1317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiao S, Peters U, Berndt S, Brenner H, Butterbach K, Caan BJ, Carlson CS, Chan AT, Chang-Claude J, Chanock S, et al: Estimating the heritability of colorectal cancer. Hum Mol Genet. 23:3898–3905. 2014. View Article : Google Scholar : PubMed/NCBI | |
Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, Farrington S, Svinti V, Palles C, Orlando G, et al: Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 10:21542019. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Civan J, Mukherjee S, Patel F and Yang H: Genetic variations in colorectal cancer risk and clinical outcome. World J Gastroenterol. 20:4167–4177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hofer P, Hagmann M, Brezina S, Dolejsi E, Mach K, Leeb G, Baierl A, Buch S, Sutterlüty-Fall H, Karner-Hanusch J, et al: Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget. 8:98623–98634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Schmit SL, Haiman CA, Keku TO, Kato I, Palmer JR, van den Berg D, Wilkins LR, Burnett T, Conti DV, et al: Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans. Int J Cancer. 140:2728–2733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Closa A, Cordero D, Sanz-Pamplona R, Solé X, Crous-Bou M, Paré-Brunet L, Berenguer A, Guino E, Lopez-Doriga A, Guardiola J, et al: Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. Carcinogenesis. 35:2039–2046. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, Tenesa A, Spain S, Broderick P, Ooi LY, et al: Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 44:770–776. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Haiman CA, Burnett T, Fortini BK, Kolonel LN, Henderson BE, Signorello LB, Blot WJ, Keku TO, Berndt SI, et al: Fine-mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans. Hum Mol Genet. 22:5048–5055. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hong SN, Park C, Kim JI, Kim DH, Kim HC, Chang DK, Rhee PL, Kim JJ, Rhee JC, Son HJ and Kim YH: Colorectal cancer-susceptibility single-nucleotide polymorphisms in Korean population. J Gastroenterol Hepatol. 30:849–857. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moazeni-Roodi A, Ghavami S, Ansari H and Hashemi M: Association between the flap endonuclease 1 gene polymorphisms and cancer susceptibility: An updated meta-analysis. J Cell Biochem. 120:13583–13597. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chou AK, Shen MY, Chen FY, Hsiao CL, Shih LC, Chang WS, Tsai CW, Ying TH, Wu MH, Huang CY and Bau DT: The association of flap endonuclease 1 genotypes with the susceptibility of endometriosis. Cancer Genomics Proteomics. 14:455–460. 2017.PubMed/NCBI | |
Kubiritova Z, Gyuraszova M, Nagyova E, Hyblova M, Harsanyova M, Budis J, Hekel R, Gazdarica J, Duris F, Kadasi L, et al: On the critical evaluation and confirmation of germline sequence variants identified using massively parallel sequencing. J Biotechnol. 298:64–75. 2019. View Article : Google Scholar : PubMed/NCBI | |
Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, Mirceta M, Mojarad BA, Yin Y, Dov A, et al: Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 586:80–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mahmood S, Sivoňová M, Matáková T, Dobrota D, Wsólová L, Dzian A, et al: Association of EGF and p53 gene polymorphisms and colorectal cancer risk in the Slovak population. Cent Eur J Med. 9:405–416. 2014. | |
Škereňová M, Halašová E, Matáková T, Jesenská L, Jurečeková J, Šarlinová M, Čierny D and Dobrota D: Low variability and stable frequency of common haplotypes of the tp53 gene region in colorectal cancer patients in a Slovak population. Anticancer Res. 37:1901–1907. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kašubová I, Kalman M, Jašek K, Burjanivová T, Malicherová B, Vaňochová A, Meršaková S, Lasabová Z and Plank L: Stratification of patients with colorectal cancer without the recorded family history. Oncol Lett. 17:3649–3656. 2019.PubMed/NCBI | |
Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, Jee SH, Kim DH, Ren Z, Cai Q, Long J, et al: Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet. 45:191–196. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SI, Bézieau S, Brenner H, Butterbach K, et al: Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology. 144:799–807. 2013. View Article : Google Scholar : PubMed/NCBI | |
Whiffin N, Hosking FJ, Farrington SM, Palles C, Dobbins SE, Zgaga L, Lloyd A, Kinnersley B, Gorman M, Tenes A, et al: Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet. 23:4729–4737. 2014. View Article : Google Scholar : PubMed/NCBI | |
Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, Howarth K, Spain SL, Broderick P, Domingo E, Farrington S, et al: Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 42:973–977. 2010. View Article : Google Scholar : PubMed/NCBI | |
Orlando G, Law PJ, Palin K, Tuupanen S, Gylfe A, Hänninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, et al: Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Hum Mol Genet. 25:2349–2359. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schmit SL, Schumacher FR, Edlund CK, Conti DV, Raskin L, Lejbkowicz F, Pinchev M, Rennert HS, Jenkins MA, Hopper JL, et al: A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis. 35:2512–2519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, Carlson CS, Edlund CK, Haile RW, Gallinger S, Zanke BW, et al: Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 131:217–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tomlinson IPM, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K, et al: A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 40:623–630. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tenesa A, Farrington SM, Prendergast JGD, Porteous ME, Walker M, Haq N, Barnetson RA, Theodoratou E, Cetnarskyj R, Cartwright N, et al: Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 40:631–637. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tomlinson IPM, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K, Palles C, Broderick P, Jaeger EEM, Farrington S, et al: Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 7:e10021052011. View Article : Google Scholar : PubMed/NCBI | |
COGENT Study, ; Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, Chandler I, Vijayakrishnan J, Sullivan K, et al: Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 40:1426–1435. 2008. View Article : Google Scholar : PubMed/NCBI | |
Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, et al: A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 39:1315–1317. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, Hsu L, Huang SC, Fischer CP, Harju JF, et al: Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun. 6:71382015. View Article : Google Scholar : PubMed/NCBI | |
Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, Wu AH, Reich D and Henderson BE: A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 39:954–956. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, et al: A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 39:984–988. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hutter CM, Slattery ML, Duggan DJ, Muehling J, Curtin K, Hsu L, Beresford SA, Rajkovic A, Sarto GE, Marshall JR, et al: Characterization of the association between 8q24 and colon cancer: Gene-environment exploration and meta-analysis. BMC Cancer. 10:6702010. View Article : Google Scholar : PubMed/NCBI | |
Cui R, Okada Y, Jang SG, Ku JL, Park JG, Kamatani Y, Hosono N, Tsunoda T, Kumar V, Tanikawa C, et al: Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut. 60:799–805. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Burnett T, Kono S, Haiman CA, Iwasaki M, Wilkens LR, Loo LW, Van Den Berg D, Kolonel LN, Henderson BE, et al: Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat Commun. 5:46132014. View Article : Google Scholar : PubMed/NCBI |