1
|
Rose-Inman H and Kuehl D: Acute leukemia.
Hematol Oncol Clin North Am. 31:1011–1028. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Parkin B, Ouillette P, Yildiz M,
Saiya-Cork K, Shedden K and Malek SN: Integrated genomic profiling,
therapy response, and survival in adult acute myelogenous leukemia.
Clin Cancer Res. 21:2045–2056. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schiller GJ: High-risk acute myelogenous
leukemia: Treatment today and tomorrow. Hematology Am Soc Hematol
Educ Program. 2013:201–208. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gores GJ and Kaufmann SH: Selectively
targeting Mcl-1 for the treatment of acute myelogenous leukemia and
solid tumors. Genes Dev. 26:305–311. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jiang XJ, Huang KK, Yang M, Qiao L, Wang
Q, Ye JY, Zhou HS, Yi ZS, Wu FQ, Wang ZX, et al: Synergistic effect
of panobinostat and bortezomib on chemoresistant acute myelogenous
leukemia cells via AKT and NF-κB pathways. Cancer Lett.
326:135–142. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Piya S, Andreeff M and Borthakur G:
Targeting autophagy to overcome chemoresistance in acute
myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gill H, Leung AY and Kwong YL: Molecularly
targeted therapy in acute myeloid leukemia. Future Oncol.
12:827–838. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hatzimichael E, Georgiou G, Benetatos L
and Briasoulis E: Gene mutations and molecularly targeted therapies
in acute myeloid leukemia. Am J Blood Res. 3:29–51. 2013.PubMed/NCBI
|
9
|
Konig H and Levis M: Is targeted therapy
feasible in acute myelogenous leukemia? Curr Hematol Malig Rep.
9:118–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Martelli AM, Evangelisti C, Chiarini F and
McCubrey JA: The phosphatidylinositol 3-kinase/Akt/mTOR signaling
network as a therapeutic target in acute myelogenous leukemia
patients. Oncotarget. 1:89–103. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pei S, Minhajuddin M, Callahan KP, Balys
M, Ashton JM, Neering SJ, Lagadinou ED, Corbett C, Ye H, Liesveld
JL, et al: Targeting aberrant glutathione metabolism to eradicate
human acute myelogenous leukemia cells. J Biol Chem.
288:33542–33558. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao
L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The
landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Fang Y and Fullwood MJ: Roles, functions,
and mechanisms of long non-coding RNAs in cancer. Genomics
Proteomics Bioinformatics. 14:42–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rücker FG, Russ AC, Cocciardi S, Kett H,
Schlenk RF, Botzenhardt U, Langer C, Krauter J, Fröhling S,
Schlegelberger B, et al: Altered miRNA and gene expression in acute
myeloid leukemia with complex karyotype identify networks of
prognostic relevance. Leukemia. 27:353–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Benassi B, Marani M, Loda M and Blandino
G: USP2a alters chemotherapeutic response by modulating redox. Cell
Death Dis. 4:e8122013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang L, Chang X, Zhai T, Yu J, Wang W, Du
A and Liu N: A novel circular RNA, circ-ATAD1, contributes to
gastric cancer cell progression by targeting miR-140-3p/YY1/PCIF1
signaling axis. Biochem Biophys Res Commun. 525:841–849. 2020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L,
Fu X, Li Q and Wang J: CXCR4(+)CD45(−) BMMNC subpopulation is
superior to unfractionated BMMNCs for protection after ischemic
stroke in mice. Brain Behav Immun. 45:98–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rao X, Huang X, Zhou Z and Lin X: An
improvement of the 2(-delta delta CT) method for quantitative
real-time polymerase chain reaction data analysis. Biostat
Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI
|
19
|
Pavani RS and Elias MC: Following
trypanosoma cruzi RPA-DNA interaction using fluorescent in situ
hybridization coupled with immunofluorescence (FISH/IF). Methods
Mol Biol. 2281:209–215. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yuan Y, Wang Q, Ma SL, Xu LQ, Liu MY, Han
B, Du N, Sun XL, Yin XL and Cao FF: lncRNA PCAT-1 interacting with
FZD6 contributes to the malignancy of acute myeloid leukemia cells
through activating Wnt/β-catenin signaling pathway. Am J Transl
Res. 11:7104–7114. 2019.PubMed/NCBI
|
21
|
Mehdipour M, Etienne J, Chen CC, Gathwala
R, Rehman M, Kato C, Liu C, Liu Y, Zuo Y, Conboy MJ and Conboy IM:
Rejuvenation of brain, liver and muscle by simultaneous
pharmacological modulation of two signaling determinants, that
change in opposite directions with age. Aging (Albany NY).
11:5628–5645. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ishikawa F, Yoshida S, Saito Y, Hijikata
A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N,
et al: Chemotherapy-resistant human AML stem cells home to and
engraft within the bone-marrow endosteal region. Nat Biotechnol.
25:1315–1321. 2007. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Nakamura-Ishizu A, Takubo K, Kobayashi H,
Suzuki-Inoue K and Suda T: CLEC-2 in megakaryocytes is critical for
maintenance of hematopoietic stem cells in the bone marrow. J Exp
Med. 212:2133–2146. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stevens AM, Xiang M, Heppler LN, Tošić I,
Jiang K, Munoz JO, Gaikwad AS, Horton TM, Long X, Narayanan P, et
al: Atovaquone is active against AML by upregulating the integrated
stress pathway and suppressing oxidative phosphorylation. Blood
Adv. 3:4215–4227. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vignon C, Debeissat C, Bourgeais J, Gallay
N, Kouzi F, Anginot A, Picou F, Guardiola P, Ducrocq E, Foucault A,
et al: Involvement of GPx-3 in the reciprocal control of redox
metabolism in the leukemic niche. Int J Mol Sci. 21:85842020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li G, Song Y, Zhang Y, Wang H and Xie J:
MiR-34b Targets HSF1 to suppress cell survival in acute myeloid
leukemia. Oncol Res. 24:109–116. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Massart R, Barnea R, Dikshtein Y, Suderman
M, Meir O, Hallett M, Kennedy P, Nestler EJ, Szyf M and Yadid G:
Role of DNA methylation in the nucleus accumbens in incubation of
cocaine craving. J Neurosci. 35:8042–8058. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao
W, Quan J and Fan X: CircRNA-5692 inhibits the progression of
hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP
expression. Cell Death Dis. 10:9002019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gu Y, Ci C, Zhang X, Su M, Lv W, Chen C,
Liu H, Zhang D, Zhang S and Zhang Y: Prediction of circRNAs based
on the DNA methylation-mediated feature sponge function in breast
cancer. Front Bioeng Biotechnol. 7:3652019. View Article : Google Scholar : PubMed/NCBI
|