miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression
- Authors:
- Venhar Gurbuz
- Sinan Sozen
- Cenk Y. Bilen
- Ece Konac
-
Affiliations: Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey, Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey, Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey - Published online on: September 23, 2021 https://doi.org/10.3892/ol.2021.13066
- Article Number: 805
-
Copyright: © Gurbuz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Stahl M, Kohrman N, Gore SD, Kim TK, Zeidan AM and Prebet T: Epigenetics in cancer: A hematological perspective. PLoS Genet. 12:e10061932016. View Article : Google Scholar : PubMed/NCBI | |
Malik SS, Batool R, Masood N and Yasmin A: Risk factors for prostate cancer: A multifactorial case-control study. Curr Probl Cancer. 42:337–343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pandareesh MD, Kameshwar VH and Byrappa KK: Prostate carcinogenesis: Insights in relation to epigenetics and inflammation. Endocr Metab Immune Disord Drug Targets. 21:253–267. 2021. View Article : Google Scholar : PubMed/NCBI | |
Prcic A, Begic E and Hiros M: Usefulness of total PSA value in prostate diseases diagnosis. Acta Inform Med. 24:156–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bickers B and Aukim-Hastie C: New molecular biomarkers for the prognosis and management of prostate cancer-the post PSA era. Anticancer Res. 29:3289–3298. 2009.PubMed/NCBI | |
Matin F, Jeet V, Moya L, Selth LA, Chambers S; Australian Prostate Cancer BioResource, ; Clements JA and Batra J: A plasma biomarker panel of four MicroRNAs for the diagnosis of prostate cancer. Sci Rep. 8:66532018. View Article : Google Scholar : PubMed/NCBI | |
Filella X, Fernández-Galan E, Bonifacio RF and Foj L: Emerging biomarkers in the diagnosis of prostate cancer. Pharmgenomics Pers Med. 11:83–94. 2018.PubMed/NCBI | |
Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ramassone A, Pagotto S, Veronese A and Visone R: Epigenetics and MicroRNAs in cancer. Int J Mol Sci. 19:4592018. View Article : Google Scholar : PubMed/NCBI | |
Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S and Scaggiante B: Epigenetic and miRNAs dysregulation in prostate cancer: The role of nutraceuticals. Anticancer Agents Med Chem. 16:1385–1402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Eberhardt M, Schmitz U and Vera J: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res. 47:7753–7766. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret V, Ludvikova M, Babjuk M, Novak K, Stolz J and Holubec L: Importance of miR-20a expression in prostate cancer tissue. Anticancer Res. 30:3579–3583. 2010.PubMed/NCBI | |
Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, Beissbarth T, Kuner R and Sültmann H: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 128:608–616. 2011. View Article : Google Scholar : PubMed/NCBI | |
Watahiki A and Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, Gout PW and Wang Y: MicroRNAs associated with metastatic prostate cancer. PLoS One. 6:e249502011. View Article : Google Scholar : PubMed/NCBI | |
Al-Kafaji G, Said HM, Alam MA and Al Naieb ZT: Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification. Oncol Lett. 16:1357–1365. 2018.PubMed/NCBI | |
Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y and Saini S: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78:1833–1844. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paziewska A, Mikula M, Dabrowska M, Kulecka M, Goryca K, Antoniewicz A, Dobruch J, Borowka A, Rutkowski P and Ostrowski J: Candidate diagnostic miRNAs that can detect cancer in prostate biopsy. Prostate. 78:178–185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang F and Zhang X: miRNA-627 inhibits cell proliferation and cell migration, promotes cell apoptosis in prostate cancer cells through upregulating MAP3K1, PTPRK and SRA1. Int J Clin Exp Pathol. 11:255–261. 2018.PubMed/NCBI | |
Tu J, Peng Q, Shen Y, Hong Y, Zhu J, Feng Z, Zhou P, Fan S, Zhu Y and Zhang Y: Identification of biomarker microRNA-mRNA regulatory pairs for predicting the docetaxel resistance in prostate cancer. J Cancer. 10:5469–5482. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bi CW, Zhang GY, Bai Y, Zhao B and Yang H: Increased expression of miR-153 predicts poor prognosis for patients with prostate cancer. Medicine (Baltimore). 98:e16705. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lynch SM, O'Neill KM, McKenna MM, Walsh CP and McKenna DJ: Regulation of miR-200c and miR-141 by methylation in prostate cancer. Prostate. 76:1146–1159. 2016. View Article : Google Scholar : PubMed/NCBI | |
Daniunaite K, Dubikaityte M, Gibas P, Bakavicius A, Lazutka JM, Ulys A, Jankevicius F and Jarmalaite S: Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet. 26:2451–2461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Torres-Ferreira J, Ramalho-Carvalho J, Gomez A, Menezes FD, Freitas R, Oliveira J, Antunes L, Bento MJ, Esteller M, Henrique R and Jerónimo C: miR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors. Mol Cancer. 16:262017. View Article : Google Scholar : PubMed/NCBI | |
Barros-Silva D, Costa-Pinheiro P, Duarte H, Sousa EJ, Evangelista AF, Graça I, Carneiro I, Martins AT, Oliveira J, Carvalho AL, et al: MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis. 9:1672018. View Article : Google Scholar : PubMed/NCBI | |
Gurbuz V, Kiliccioglu I, Dikmen AU, Bilen CY, Sozen S and Konac E: Comparative analysis of epi-miRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene. 758:1449632020. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam D, Thombre R, Dhar A and Anant S: DNA methyltransferases: A novel target for prevention and therapy. Front Oncol. 4:802014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang C, Wu C, Cui W and Wang L: DNA methyltransferases in cancer: Biology, paradox, aberrations, and targeted therapy. Cancers (Basel). 12:21232020. View Article : Google Scholar : PubMed/NCBI | |
Maehama T, Taylor GS and Dixon JE: PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem. 70:247–279. 2001. View Article : Google Scholar : PubMed/NCBI | |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 162:4542015. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Li S, Wang F, Fan C and Wang J: Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Med Genet. 20:1912019. View Article : Google Scholar : PubMed/NCBI | |
Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X and Wu H: NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell. 9:367–378. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bowen C, Ostrowski MC, Leone G and Gelmann EP: Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression. Cancer Res. 79:4124–4134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gurel B, Ali TZ, Montgomery EA, Begum S, Hicks J, Goggins M, Eberhart CG, Clark DP, Bieberich CJ, Epstein JI and Marzo AM: NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol. 34:1097–1105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shivakumar M, Lee Y, Bang L, Garg T, Sohn KA and Kim D: Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Med Genomics. 10 (Suppl 1):S302017. View Article : Google Scholar : PubMed/NCBI | |
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A and Zarghami N: Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother. 106:1668–1677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arif K, Elliott E, Haupt L and Griffiths L: Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers (Basel). 12:29222020. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, et al: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 104:15805–15810. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reale E, Taverna D, Cantini L, Martignetti L, Osella M, De Pittà C, Virga F, Orso F and Caselle M: Investigating the epi-miRNome: Identification of epi-miRNAs using transfection experiments. Epigenomics. 11:1581–1599. 2019. View Article : Google Scholar : PubMed/NCBI | |
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P and Caraglia M: Mir-34: A new weapon against cancer? Mol Ther Nucleic Acids. 3:e1942014. View Article : Google Scholar : PubMed/NCBI | |
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G and Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 6:1586–1593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, et al: miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 19:73–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vogt M, Munding J, Grüner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A and Hermeking H: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Deng X, Zeng X and Peng X: The role of Mir-148a in cancer. J Cancer. 7:1233–1241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamilton MP, Rajapakshe KI, Bader DA, Cerne JZ, Smith EA, Coarfa C, Hartig SM and McGuire SE: The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP. Neoplasia. 18:356–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, Yan M, Zhu Z and Liu B: MiR-148a functions as a tumor suppressor by targeting CCK-BR via inactivating STAT3 and akt in human gastric cancer. PLoS One. 11:e01589612016. View Article : Google Scholar : PubMed/NCBI | |
Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH, Wang Y, Xu XL, Li J, Wang YL, et al: miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci. 7:567–574. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walter BA, Valera VA, Pinto PA and Merino MJ: Comprehensive microRNA profiling of prostate cancer. J Cancer. 4:350–357. 2013. View Article : Google Scholar : PubMed/NCBI | |
Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL and Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res. 67:6130–6135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, Purow B, Parsons S, Lawler S and Abounader R: microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 74:1541–1553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dybos SA, Flatberg A, Halgunset J, Viset T, Rolfseng T, Kvam S and Skogseth H: Increased levels of serum miR-148a-3p are associated with prostate cancer. APMIS. 126:722–731. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szczyrba J, Löprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, et al: The MicroRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res. 8:529–538. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Li J, Ding Q, Cheng G, Zhou H, Tao L, Cai H, Li P, Cao Q, Ju X, et al: miR-152 controls migration and invasive potential by targeting TGFα in prostate cancer cell lines. Prostate. 73:1082–1089. 2013. View Article : Google Scholar : PubMed/NCBI | |
Theodore SC, Davis M, Zhao F, Wang H, Chen D, Rhim J, Dean-Colomb W, Turner T, Ji W, Zeng G, et al: MicroRNA profiling of novel African American and Caucasian prostate cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1. Oncotarget. 5:3512–3525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li B, Xie Z and Li B: miR-152 functions as a tumor suppressor in colorectal cancer by targeting PIK3R3. Tumor Biol. 37:10075–10084. 2016. View Article : Google Scholar : PubMed/NCBI | |
Braconi C, Huang N and Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 51:881–890. 2010.PubMed/NCBI | |
Huang S, Li X and Zhu H: MicroRNA-152 targets phosphatase and tensin homolog to inhibit apoptosis and promote cell migration of nasopharyngeal carcinoma cells. Med Sci Monit. 22:4330–4337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Liu H, Zou H, Chen R, Dou Y, Sheng S, Dai S, Ai J, Melson J, Kittles RA, et al: Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. J Cancer. 7:490–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moya L, Meijer J, Schubert S, Matin F and Batra J: Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 expression as biomarker for prostate cancer diagnosis. Int J Mol Sci. 20:11542019. View Article : Google Scholar : PubMed/NCBI | |
Carter JV, O'Brien SJ, Burton JF, Oxford BG, Stephen V, Hallion J, Bishop C, Galbraith NJ, Eichenberger MR, Sarojini H, et al: The microRNA-200 family acts as an oncogene in colorectal cancer by inhibiting the tumor suppressor RASSF2. Oncol Lett. 18:3994–4007. 2019.PubMed/NCBI | |
Yang R, Xu J, Hua X, Tian Z, Xie Q, Li J, Jiang G, Cohen M, Sun H and Huang C: Overexpressed miR-200a promotes bladder cancer invasion through direct regulating Dicer/miR-16/JNK2/MMP-2 axis. Oncogene. 39:1983–1996. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, Wong CH, Wang H, Ungewiss C, Ahn YH, et al: Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res. 71:7670–7682. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong CM, Wei L, Au SL, Fan DN, Zhou Y, Tsang FH, Law CT, Lee JM, He X, Shi J, et al: MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget. 6:13658–13670. 2015. View Article : Google Scholar : PubMed/NCBI | |
Osella M, Riba A, Testori A, Corà D and Caselle M: Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet. 5:3452014. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Kanai Y, Ushijima S, Kitamura T, Kakizoe T and Hirohashi S: DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J Urol. 173:1767–1771. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Kanai YAE, Saito Y, Kitamura T, Kakizoe T and Hirohashi S: Increased DNA methyltransferase 1 protein expression in human transitional cell carcinoma of the bladder. J Urol. 170:2463–2466. 2003. View Article : Google Scholar : PubMed/NCBI | |
Patra SK, Patra A, Zhao H and Dahiya R: DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog. 33:163–171. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang W and Xu J: DNA methyltransferases and their roles in tumorigenesis. Biomark Res. 5:12017. View Article : Google Scholar : PubMed/NCBI | |
Qi D, Li J, Que B, Su J, Li M, Zhang C, Yang M, Zhou G and Ji W: Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int. 16:812016. View Article : Google Scholar : PubMed/NCBI | |
Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Diaz-Lagares A, Iaboni M, Fiore D, Russo V, Todaro M, Romano G, et al: MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 7:580–592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, Li Y, Tang SC, Qin S, Du N, et al: MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med. 22:6262–6274. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL and Li XH: Overexpression of DNA (Cytosine-5)-methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-methyltransferase 3A (DNMT3A) is associated with aggressive behavior and hypermethylation of tumor suppressor genes in human pituitary adenomas. Med Sci Monit. 24:4841–4850. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q and Wu B: Aberrant DNA methyltransferase 1 expression in clear cell renal cell carcinoma development and progression. Chin J Cancer Res. 26:371–381. 2014.PubMed/NCBI | |
Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, Henrique R and Jerónimo C: Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget. 5:5950–5964. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jagadeesh S, Sinha S, Pal BC, Bhattacharya S and Banerjee PP: Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun. 362:212–217. 2007. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, Bhattacharya S and Banerjee PP: Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer. 12:992013. View Article : Google Scholar : PubMed/NCBI | |
Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A and Abate-Shen C: Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech. 11:dmm0351392018. View Article : Google Scholar : PubMed/NCBI | |
Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, Saini S, Varahram S, Kulkarni P, Dasgupta P, et al: Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and caucasians. Oncotarget. 8:8356–8368. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chamani F, Sadeghizadeh M, Masoumi M and Babashah S: Evaluation of MiR-34 family and DNA methyltransferases 1, 3A, 3B gene expression levels in hepatocellular carcinoma following treatment with dendrosomal nanocurcumin. Asian Pac J Cancer Prev. 17:219–224. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sengupta D, Deb M and Patra SK: Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene. 660:68–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duursma AM, Kedde M, Schrier M, le Sage C and Agami R: miR-148 targets human DNMT3b protein coding region. RNA. 14:872–877. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hua D, Mo F, Ding D, Li L, Han X, Zhao N, Foltz G, Lin B, Lan Q and Huang Q: A catalogue of glioblastoma and brain MicroRNAs identified by deep sequencing. OMICS. 16:690–699. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Zhang X, Chai J, Chen P, Ren P and Gong M: Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biol. 35:12467–12472. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang Y, Xu T, Li C, Wu J, He Q, Wang G, Ding C, Liu K, Tang H and Ji F: Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett. 12:3208–3214. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Lian Z, Sun B, Clayton MM, Ng IOL and Feitelson MA: Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS One. 7:e353312012. View Article : Google Scholar : PubMed/NCBI | |
Ramalho-Carvalho J, Gonçalves CS, Graça I, Bidarra D, Pereira-Silva E, Salta S, Godinho MI, Gomez A, Esteller M, Costa BM, et al: A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97. Clin Epigenetics. 10:402018. View Article : Google Scholar : PubMed/NCBI | |
Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C and Camussi G: Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 5:e118032010. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, Qu A, Zhang X, Pan H, Yang Y and Wang C: Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget. 7:36733–36742. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, Hamdy FC and Catto JW: Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res. 17:1287–1296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Yao F, Xiao Z, Sun Y and Ma L: MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Ding M, Xu K, Yang C and Mao LJ: Exosomes in diagnosis and therapy of prostate cancer. Oncotarget. 8:97693–97700. 2017. View Article : Google Scholar : PubMed/NCBI | |
Turchinovich A, Samatov T, Tonevitsky A and Burwinkel B: Circulating miRNAs: Cell-cell communication function? Front Genet. 4:1192013. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Young CY and Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 42:363–369. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F and Zhang W: Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol. 7:192014. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Lu RL, Li JX and Rong LJ: MiR-200a and miR-200b target PTEN to regulate the endometrial cancer cell growth in vitro. Asian Pac J Trop Med. 10:498–502. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yoneyama K, Ishibashi O, Kawase R, Kurose K and Takeshita T: miR-200a, miR-200b and miR-429 are onco-miRs that Target the PTEN gene in endometrioid endometrial carcinoma. Anticancer Res. 35:1401–1410. 2015.PubMed/NCBI | |
Suo HB, Zhang KC and Zhao J: MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. Eur Rev Med Pharmacol Sci. 22:4080–4089. 2018.PubMed/NCBI | |
Liu J, Zhang X, Huang Y, Zhang Q, Zhou J, Zhang X and Wang X: miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncol Lett. 17:1453–1460. 2019.PubMed/NCBI | |
Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang N, Feng J, Shi S, Zhang L, et al: FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J. 33:10717–10730. 2019. View Article : Google Scholar : PubMed/NCBI |