1
|
Mahalingam D, Malik L, Beeram M, Rodon J, Sankhala K, Mita A, Benjamin D, Ketchum N, Michalek J, Tolcher A, et al: Phase II study evaluating the efficacy, safety, and pharmacodynamic correlative study of dual antiangiogenic inhibition using bevacizumab in combination with sorafenib in patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 74:77–84. 2014. View Article : Google Scholar
|
2
|
Strickland LR, Pal HC, Elmets CA and Afaq F: Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett. 359:20–35. 2015. View Article : Google Scholar
|
3
|
Luo C, Shen J, Ying J, Fang X, Wang X, Fu Z and Liu P: Case report of a KIT-mutated melanoma patient with an excellent response to apatinib and temozolomide combination therapy. OncoTargets Ther. 10:4553–4557. 2017. View Article : Google Scholar
|
4
|
Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, Panageas KS, Busam KJ, Chmielowski B, Lutzky J, et al: KIT as a therapeutic target in metastatic melanoma. JAMA. 305:2327–2334. 2011. View Article : Google Scholar
|
5
|
Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar
|
6
|
Goldinger SM, Murer C, Stieger P and Dummer R: Targeted therapy in melanoma - the role of BRAF, RAS and KIT mutations. EJC Suppl. 11:92–96. 2013. View Article : Google Scholar
|
7
|
Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, Town A, Harlow A, Cruz F III, Azar S, et al: KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 14:6821–6828. 2008. View Article : Google Scholar
|
8
|
Carvajal RD: Another option in our KIT of effective therapies for advanced melanoma. J Clin Oncol. 31:3173–3175. 2013. View Article : Google Scholar
|
9
|
Huang S, Luca M, Gutman M, McConkey DJ, Langley KE, Lyman SD and Bar-Eli M: Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene. 13:2339–2347. 1996.
|
10
|
Montone KT, van Belle P, Elenitsas R and Elder DE: Proto-oncogene c-kit expression in malignant melanoma: Protein loss with tumor progression. Mod Pathol. 10:939–944. 1997.
|
11
|
Kuczynski EA, Lee CR, Man S, Chen E and Kerbel RS: Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res. 75:2510–2519. 2015. View Article : Google Scholar
|
12
|
Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, et al: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64:7099–7109. 2004. View Article : Google Scholar
|
13
|
Ishiguro T, Nakajima M, Naito M, Muto T and Tsuruo T: Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res. 56:875–879. 1996.
|
14
|
Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, et al Committee of the National Cancer Research Institute, : Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 102:1555–1577. 2010. View Article : Google Scholar
|
15
|
Takeda T, Tsubaki M, Sakamoto K, Ichimura E, Enomoto A, Suzuki Y, Itoh T, Imano M, Tanabe G, Muraoka O, et al: Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol. 306:105–112. 2016. View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
17
|
Tsubaki M, Takeda T, Kino T, Obata N, Itoh T, Imano M, Mashimo K, Fujiwara D, Sakaguchi K, Satou T, et al: Statins improve survival by inhibiting spontaneous metastasis and tumor growth in a mouse melanoma model. Am J Cancer Res. 5:3186–3197. 2015.
|
18
|
Curtin JA, Busam K, Pinkel D and Bastian BC: Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 24:4340–4346. 2006. View Article : Google Scholar
|
19
|
Li G, Satyamoorthy K and Herlyn M: N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 61:3819–3825. 2001.
|
20
|
Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, et al: Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol. 51:725–733. 2009. View Article : Google Scholar
|
21
|
Merz M, Komljenovic D, Zwick S, Semmler W and Bäuerle T: Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur J Cancer. 47:277–286. 2011. View Article : Google Scholar
|
22
|
Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T, Dreas A, Żyłkiewicz E, Mikulski M, Brzózka K, Golas A, et al: MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Invest. 127:4179–4192. 2017. View Article : Google Scholar
|
23
|
Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA and Zigler AJ: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 96:925–932. 2000. View Article : Google Scholar
|
24
|
Todd JR, Scurr LL, Becker TM, Kefford RF and Rizos H: The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene. 33:236–245. 2014. View Article : Google Scholar
|
25
|
Tsubaki M, Matsuoka H, Yamamoto C, Kato C, Ogaki M, Satou T, Itoh T, Kusunoki T, Tanimori Y and Nishida S: The protein kinase C inhibitor, H7, inhibits tumor cell invasion and metastasis in mouse melanoma via suppression of ERK1/2. Clin Exp Metastasis. 24:431–438. 2007. View Article : Google Scholar
|
26
|
Tsubaki M, Satou T, Itoh T, Imano M, Ogaki M, Yanae M and Nishida S: Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway. Toxicol Appl Pharmacol. 259:402–410. 2012. View Article : Google Scholar
|
27
|
Qian F, Vaux DL and Weissman IL: Expression of the integrin α4β1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell. 77:335–347. 1994. View Article : Google Scholar
|
28
|
Braeuer RR, Zigler M, Villares GJ, Dobroff AS and Bar-Eli M: Transcriptional control of melanoma metastasis: The importance of the tumor microenvironment. Semin Cancer Biol. 21:83–88. 2011. View Article : Google Scholar
|
29
|
Stahtea XN, Roussidis AE, Kanakis I, Tzanakakis GN, Chalkiadakis G, Mavroudis D, Kletsas D and Karamanos NK: Imatinib inhibits colorectal cancer cell growth and suppresses stromal-induced growth stimulation, MT1-MMP expression and pro-MMP2 activation. Int J Cancer. 121:2808–2814. 2007. View Article : Google Scholar
|
30
|
Chiang IT, Liu YC, Wang WH, Hsu FT, Chen HW, Lin WJ, Chang WY and Hwang JJ: Sorafenib inhibits TPA-induced MMP-9 and VEGF expression via suppression of ERK/NF-κB pathway in hepatocellular carcinoma cells. In Vivo. 26:671–681. 2012.
|
31
|
Reiss KA, Yu S, Mamtani R, Mehta R, D'Addeo K, Wileyto EP, Taddei TH and Kaplan DE: Starting dose of sorafenib for the treatment of hepatocellular carcinoma: A retrospective, multi-institutional study. J Clin Oncol. 35:3575–3581. 2017. View Article : Google Scholar
|
32
|
Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, Faghih M, Brendel E, Voliotis D, Haase CG, et al: Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 23:965–972. 2005. View Article : Google Scholar
|
33
|
Strumberg D, Clark JW, Awada A, Moore MJ, Richly H, Hendlisz A, Hirte HW, Eder JP, Lenz HJ and Schwartz B: Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: A review of four phase I trials in patients with advanced refractory solid tumors. Oncologist. 12:426–437. 2007. View Article : Google Scholar
|
34
|
Chen ML, Yan BS, Lu WC, Chen MH, Yu SL, Yang PC and Cheng AL: Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer. 134:319–331. 2014. View Article : Google Scholar
|
35
|
Fabian MA, Biggs WH III, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, et al: A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 23:329–336. 2005. View Article : Google Scholar
|
36
|
Hu S, Niu H, Inaba H, Orwick S, Rose C, Panetta JC, Yang S, Pounds S, Fan Y, Calabrese C, et al: Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. J Natl Cancer Inst. 103:893–905. 2011. View Article : Google Scholar
|
37
|
Zebary A, Omholt K, Vassilaki I, Höiom V, Lindén D, Viberg L, Kanter-Lewensohn L, Johansson CH and Hansson J: KIT, NRAS, BRAF and PTEN mutations in a sample of Swedish patients with acral lentiginous melanoma. J Dermatol Sci. 72:284–289. 2013. View Article : Google Scholar
|
38
|
Handolias D, Salemi R, Murray W, Tan A, Liu W, Viros A, Dobrovic A, Kelly J and McArthur GA: Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res. 23:210–215. 2010. View Article : Google Scholar
|
39
|
Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, et al: Distinct sets of genetic alterations in melanoma. N Engl J Med. 353:2135–2147. 2005. View Article : Google Scholar
|
40
|
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et al BRIM-3 Study Group, : Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar
|
41
|
Itoh M, Goto A, Wakasugi H, Yoshida Y, Matsunaga Y, Fujii K, Suzuki K, Yonezawa K, Abe T, Arimura Y, et al: Anorectal melanoma with a KIT-activating mutation, which is a target for tyrosine kinase inhibitor. Int J Clin Oncol. 16:428–434. 2011. View Article : Google Scholar
|
42
|
Lee SJ, Kim TM, Kim YJ, Jang KT, Lee HJ, Lee SN, Ahn MS, Hwang IG, Lee S, Lee MH, et al: Phase II Trial of nilotinib in patients with metastatic malignant melanoma harboring KIT gene aberration: A multicenter trial of Korean Cancer Study Group (UN10-06). Oncologist. 20:1312–1319. 2015. View Article : Google Scholar
|
43
|
Morris VL, Toseef T, Nazumudeen FB, Rivoira C, Spatafora C, Tringali C and Rotenberg SA: Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells. Mol Cell Biochem. 402:83–91. 2015. View Article : Google Scholar
|
44
|
Akil H, Rouanet J, Viallard C, Besse S, Auzeloux P, Chezal JM, Miot-Noirault E, Quintana M and Degoul F: Targeted radionuclide therapy decreases melanoma lung invasion by modifying epithelial-mesenchymal transition-like mechanisms. Transl Oncol. 12:1442–1452. 2019. View Article : Google Scholar
|
45
|
Melnikova VO, Bolshakov SV, Walker C and Ananthaswamy HN: Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene. 23:2347–2356. 2004. View Article : Google Scholar
|
46
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F and Ghanem GE: RTK inhibitors in melanoma: From bench to bedside. Cancers (Basel). 13:16852021. View Article : Google Scholar
|
47
|
Grossman D: Imatinib mesylate for melanoma: Will a new target be revealed? J Invest Dermatol. 123:xi–xiii. 2004. View Article : Google Scholar
|