1
|
Bergquist A and von Seth E: Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 29:221–232. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Banales JM, Marin JJ, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 17:557–588. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB, La Vecchia C and Negri E: Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 71:104–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pratap P, Raza ST and Pratap S: Cholangiocarcinoma: Etiology, pathogenesis, diagnosis, and management. Bioactive Components, Diet and Medical Treatment in Cancer Prevention. 201–213. 2018. View Article : Google Scholar
|
5
|
Patel T: Cholangiocarcinoma - controversies and challenges. Nat Rev Gastroenterol Hepatol. 8:189–200. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Martinez-Becerra P, Vaquero J, Romero MR, Lozano E, Anadon C, Macias RI, Serrano MA, Grañé-Boladeras N, Muñoz-Bellvis L, Alvarez L, et al: No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors. Mol Pharm. 9:1693–1704. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Razumilava N and Gores GJ: Cholangiocarcinoma. Lancet. 383:2168–2179. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chong DQ and Zhu AX: The landscape of targeted therapies for cholangiocarcinoma: Current status and emerging targets. Oncotarget. 7:46750–46767. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yao D, Kunam VK and Li X: A review of the clinical diagnosis and therapy of cholangiocarcinoma. J Int Med Res. 42:3–16. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, McPherson JR, Allen GE, Ng CC, Wong BH, et al: Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 44:690–693. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, Nellore V, Kongpetch S, Ng AW, Ng LM, et al: Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7:1116–1135. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N and Riggins GJ: Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumour Biol. 35:5357–5367. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 125:1269–1285. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, Yamaguchi TP, Ohba Y and Hatakeyama S: Molecular role of RNF43 in canonical and noncanonical Wnt signaling. Mol Cell Biol. 35:2007–2023. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Loregger A, Grandl M, Mejías-Luque R, Allgäuer M, Degenhart K, Haselmann V, Oikonomou C, Hatzis P, Janssen KP, Nitsche U, et al: The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci Signal. 8:ra902015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao Y, Cai A, Xi H, Li J, Xu W, Zhang Y, Zhang K, Cui J, Wu X, Wei B, et al: Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway. Stem Cell Res Ther. 8:982017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Neumeyer V, Brutau-Abia A, Allgäuer M, Pfarr N, Weichert W, Falkeis-Veits C, Kremmer E, Vieth M, Gerhard M and Mejías-Luque R: Loss of RNF43 function contributes to gastric carcinogenesis by impairing DNA damage response. Cell Mol Gastroenterol Hepatol. 11:1071–1094. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Talabnin C, Janthavon P, Thongsom S, Suginta W, Talabnin K and Wongkham S: Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma. Hum Pathol. 52:47–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, Sripa C and Miwa M: Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol. 11:3392–3397. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sripa B, Seubwai W, Vaeteewoottacharn K, Sawanyawisuth K, Silsirivanit A, Kaewkong W, Muisuk K, Dana P, Phoomak C, Lert-Itthiporn W, et al: Functional and genetic characterization of three cell lines derived from a single tumor of an opisthorchis viverrini-associated cholangiocarcinoma patient. Hum Cell. 33:695–708. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Talabnin C, Talabnin K and Wongkham S: Enhancement of piperlongumine chemosensitivity by silencing heme oxygenase-1 expression in cholangiocarcinoma cell lines. Oncol Lett. 20:2483–2492. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shen DY, Zhang W, Zeng X and Liu CQ: Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 104:1303–1308. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dey N, Young B, Abramovitz M, Bouzyk M, Barwick B, De P and Leyland-Jones B: Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner. Burchell JM: PLoS One. 8:e774252013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY and Weiss SJ: Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci USA. 109:11312–11317. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Takahashi N, Yamaguchi K, Ikenoue T, Fujii T and Furukawa Y: Identification of two Wnt-responsive elements in the intron of RING finger protein 43 (RNF43) gene. PLoS One. 9:e865822014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mognol GP, de Araujo-Souza PS, Robbs BK, Teixeira LK and Viola JP: Transcriptional regulation of the c-Myc promoter by NFAT1 involves negative and positive NFAT-responsive elements. Cell Cycle. 11:1014–1028. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ghahhari NM and Babashah S: Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 51:1638–1649. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Neumeyer V, Grandl M, Dietl A, Brutau-Abia A, Allgäuer M, Kalali B, Zhang Y, Pan KF, Steiger K, Vieth M, et al: Loss of endogenous RNF43 function enhances proliferation and tumour growth of intestinal and gastric cells. Carcinogenesis. 40:551–559. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Noll AT, Cramer T, Olde Damink SW and Schaap FG: Cholangiocarcinoma, gone without the Wnt? World J Hepatol. 8:1093–1096. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang G, Fu Y, Yang X, Luo X, Wang J, Gong J and Hu J: Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene. 35:651–661. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Perry JM, Tao F, Roy A, Lin T, He XC, Chen S, Lu X, Nemechek J, Ruan L, Yu X, et al: Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol. 22:689–700. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Toh TB, Lim JJ, Hooi L, Rashid MBMA and Chow EK: Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol. 72:104–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sribenja S, Sawanyawisuth K, Kraiklang R, Wongkham C, Vaeteewoottacharn K, Obchoei S, Yao Q, Wongkham S and Chen C: Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma. BMC Cancer. 13:4302013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Di Maira G, Gentilini A, Pastore M, Caligiuri A, Piombanti B, Raggi C, Rovida E, Lewinska M, Andersen JB, Borgo C, et al: The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis. 8:612019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park DD, Phoomak C, Xu G, Olney LP, Tran KA, Park SS, Haigh NE, Luxardi G, Lert-Itthiporn W, Shimoda M, et al: Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans. Proc Natl Acad Sci USA. 117:7633–7644. 2020. View Article : Google Scholar : PubMed/NCBI
|