MCP‑1 targeting: Shutting off an engine for tumor development (Review)
- Authors:
- Liang Wang
- Jinxin Lan
- Jiaping Tang
- Na Luo
-
Affiliations: Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China - Published online on: November 19, 2021 https://doi.org/10.3892/ol.2021.13144
- Article Number: 26
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
da Cunha Santos G, Shepherd FA and Tsao MS: EGFR mutations and lung cancer. Annu Rev Pathol. 6:49–69. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deshmane SL, Kremlev S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blanpain CD, Migeotte I, Lee B, Vakili J, Doranz BJ, Govaerts C, Vassart G, Doms RW and Parmentier M: CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood. 94:1899–1905. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bonini JA, Martin SK, Dralyuk F, Roe MW, Philipson LH and Steiner DF: Cloning, expression, and chromosomal mapping of a novel human CC-chemokine receptor (CCR10) that displays high-affinity binding for MCP-1 and MCP-3. DNA Cell Biol. 16:1249–1256. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hemmerich S, Paavola C, Bloom A, Bhakta S, Freedman R, Grunberger D, Krstenansky J, Lee S, McCarley D, Mulkins M, et al: Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry. 38:13013–13025. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kashiwazaki M, Tanaka T, Kanda H, Ebisuno Y, Izawa D, Fukuma N, Akimitsu N, Sekimizu K, Monden M and Miyasaka M: A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int Immunol. 15:1219–1227. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schweickart VL, Epp A, Raport CJ and Gray PW: CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines. J Biol Chem. 275:9550–9556. 2000. View Article : Google Scholar : PubMed/NCBI | |
Robinson EA, Yoshimura T, Leonard EJ, Tanaka S, Griffin PR, Shabanowitz J, Hunt DF and Appella E: Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc Natl Acad Sci USA. 86:1850–1854. 1989. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura T, Robinson EA, Tanaka S, Appella E and Leonard EJ: Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol. 142:1956–1962. 1989.PubMed/NCBI | |
Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI and Leonard EJ: Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 244:487–493. 1989. View Article : Google Scholar : PubMed/NCBI | |
Bottazzi B, Colotta F, Sica A, Nobili N and Mantovani A: A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer. 45:795–797. 1990. View Article : Google Scholar : PubMed/NCBI | |
Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y and Miyazaki M: Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 150:255–263. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Li B, Li Z, Li J and Sun S and Sun S: Cancer-associated adipocytes: Key players in breast cancer progression. J Hematol Oncol. 12:952019. View Article : Google Scholar : PubMed/NCBI | |
Mehrabian M, Sparkes RS, Mohandas T, Fogelman AM and Lusis AJ: Localization of monocyte chemotactic protein-1 gene (SCYA2) to human chromosome 17q11.2-q21.1. Genomics. 9:200–203. 1991. View Article : Google Scholar : PubMed/NCBI | |
Lubkowski J, Bujacz G, Boqué L, Domaille PJ, Handel TM and Wlodawer A: The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol. 4:64–69. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ernst CA and Rollins BJ: MCP-1: Structure/activity analysis. Methods. 10:93–103. 1996. View Article : Google Scholar : PubMed/NCBI | |
Handel TM and Domaille PJ: Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry. 35:6569–6584. 1996. View Article : Google Scholar : PubMed/NCBI | |
Proost P, Struyf S, Couvreur M, Lenaerts JP, Conings R, Menten P, Verhaert P, Wuyts A and Damme JV: Posttranslational modifications affect the activity of the human monocyte chemotactic proteins MCP-1 and MCP-2: Identification of MCP-2(6–76) as a natural chemokine inhibitor. J Immunol. 160:4034–4041. 1998.PubMed/NCBI | |
Jung Y, Ahn SH, Park H, Park SH, Choi K, Choi C, Kang JL and Choi YH: MCP-1 and MIP-3α secreted from necrotic cell-treated glioblastoma cells promote migration/infiltration of microglia. Cell Physiol Biochem. 48:1332–1346. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Hung PF, Lu SC, Chung HL, Chiang SL, Wu CT, Chou WC and Sun CY: MCP-1/MCPIP-1 signaling modulates the effects of IL-1β in renal cell carcinoma through ER stress-mediated apoptosis. Int J Mol Sci. 20:61012019. View Article : Google Scholar : PubMed/NCBI | |
Yue Y, Lian J, Wang T, Luo C, Yuan Y, Qin G, Zhang B and Zhang Y: Interleukin-33-nuclear factor-κB-CCL2 signaling pathway promotes progression of esophageal squamous cell carcinoma by directing regulatory T cells. Cancer Sci. 111:795–806. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nakatsumi H, Matsumoto M and Nakayama KI: Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated macrophages. Cell Rep. 21:2471–2486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C, He W, Huang J, Wang B, Li H, Cai Q, Su F, Bi J, Liu H, Zhang B, et al: LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun. 9:38262018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Liu D, Zeng X, Wang J, Liu J, Cheng J, Lei K, Bai H, Ji N, Zhou M, et al: PA28γ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma. Cancer Lett. 428:192–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Castiñeiras-Landeira MI, Rodiño-Janeiro BK, Paradela-Dobarro B, Batista-Oliveira AL, Raposeiras-Roubín S, González-Peteiro M, González-Juanatey JR and Álvarez E: Change of concept about the regulation of angiotensin II-induced monocyte chemoattractant protein-1 production in human endothelial cells. Vascul Pharmacol. 80:20–34. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rollins BJ and Pober JS: Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am J Pathol. 138:1315–1319. 1991.PubMed/NCBI | |
Hembruff SL, Jokar I, Yang L and Cheng N: Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia. 12:425–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kuper C, Beck FX and Neuhofer W: Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells. Oncol Lett. 12:2201–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE, Melhem MF, Yao Z and Zhang J: Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate. 66:1311–1318. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mohamed HT, El-Ghonaimy EA, El-Shinawi M, Hosney M, Götte M, Woodward WA, El-Mamlouk T and Mohamed MM: IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2. Toxicol Appl Pharmacol. 401:1150922020. View Article : Google Scholar : PubMed/NCBI | |
Fridlender ZG, Kapoor V, Buchlis G, Cheng G, Sun J, Wang LC, Singhal S, Snyder LA and Albelda SM: Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol. 44:230–237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Loberg RD, Ying C, Craig M, Yan L, Snyder LA and Pienta KJ: CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 9:556–562. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Li X, Guo E, Li N, Zhou B, Lu H, Huang J, Xia M, Shan W, Wang B, et al: MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene. 39:1681–1695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Teng KY, Han J, Zhang X, Hsu SH, He S, Wani NA, Barajas JM, Snyder LA, Frankel WL, Caligiuri MA, et al: Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 16:312–322. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, He S, McNamara W, Lee SY, Olson OC, et al: Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Cancer Res. 77:6400–6414. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salacz M, Kast RE, Saki N, Brüning A, Karpel-Massler G and Halatsch ME: Toward a noncytotoxic glioblastoma therapy: Blocking MCP-1 with the MTZ regimen. Onco Targets Ther. 27:2535–2545. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H and Matsushima K: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 6:3282–3289. 2000.PubMed/NCBI | |
Kuziel G, Thompson V, D'Amato JV and Arendt LM: Stromal CCL2 signaling promotes mammary tumor fibrosis through recruitment of myeloid-lineage cells. Cancers (Basel). 12:20832020. View Article : Google Scholar : PubMed/NCBI | |
Cho HR, Kumari N, Vu HT, Kim H, Park CK and Choi SH: Increased antiangiogenic effect by blocking CCL2-dependent macrophages in a rodent glioblastoma model: Correlation study with dynamic susceptibility contrast perfusion MRI. Sci Rep. 9:110852019. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, et al: Secalonic acid-D represses HIF1alpha/VEGF-mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res. 75:2886–2896. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Lu Y and Pienta KJ: Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 102:522–528. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Sun W, Liao Y, Zeng H, Shan L, Yin F, Wang Z, Zhou Z, Hua Y and Cai Z: Monocyte chemotactic protein-1 promotes the proliferation and invasion of osteosarcoma cells and upregulates the expression of AKT. Mol Med Rep. 12:219–225. 2015. View Article : Google Scholar : PubMed/NCBI | |
Loberg RD, Day LL, Harwood J, Ying C, John LN, Giles R, Neeley CK and Pienta KJ: CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 8:578–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Chen PC, Chang TM and Hou CH: Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. J Exp Clin Cancer Res. 39:2542020. View Article : Google Scholar : PubMed/NCBI | |
He S and Zhang X: The rs1024611 in the CCL2 gene and risk of gynecological cancer in Asians: A meta-analysis. World J Surg Oncol. 16:342018. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Ishiguro H, Kobayashi N, Hasumi H, Watanabe M, Yao M and Uemura H: Adipocyte-derived monocyte chemotactic protein-1 (MCP-1) promotes prostate cancer progression through the induction of MMP-2 activity. Prostate. 75:1009–1019. 2015. View Article : Google Scholar : PubMed/NCBI | |
An J, Xue Y, Long M, Zhang G, Zhang J and Su H: Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget. 8:39230–39240. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang CH and Tsai CC: CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol. 83:335–344. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, Liu RM, Wang SM and Lv WM: MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem. 34:266–276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orlichenko LS and Radisky DC: Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 25:593–600. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li S, Lu J, Chen Y, Xiong N, Li L, Zhang J, Yang H, Wu C, Zeng H and Liu Y: MCP-1-induced ERK/GSK-3β/snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol. 14:621–630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W and Ma Z: Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech. 11:82021. View Article : Google Scholar : PubMed/NCBI | |
Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ and Murphy WJ: Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood. 96:34–40. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xu M, Li F, Wang X, Bower KA, Frank JA, Lu Y, Chen G, Zhang Z, Ke Z, et al: Ethanol promotes mammary tumor growth and angiogenesis: The involvement of chemoattractant factor MCP-1. Breast Cancer Res Treat. 133:1037–1048. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Gu X, Lu Y, Gu C, Zheng Y, Zhang Z, Chen L, Yao Z and Li LY: Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization. Angiogenesis. 15:71–85. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arefieva TI, Kukhtina NB, Antonova OA and Krasnikova TL: MCP-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine. 31:439–446. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 19:412020. View Article : Google Scholar : PubMed/NCBI | |
Guilliams M, Mildner A and Yona S: Developmental and functional heterogeneity of monocytes. Immunity. 49:595–613. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, Kosugi-Kanaya M, Abe J, Tomura M, Ziogas J and Matsushima K: Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci USA. 111:7771–7776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI | |
Laviron M and Boissonnas A: Ontogeny of tumor-associated macrophages. Front Immunol. 10:17992019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X, et al: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cranford TL, Velázquez KT, Enos RT, Bader JE, Carson MS, Chatzistamou L, Nagarkatti M and Murphy EA: Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol Ther. 18:85–93. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li F, Kitajima S, Kohno S, Yoshida A, Tange S, Sasaki S, Okada N, Nishimoto Y, Muranaka H, Nagatani N, et al: Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res. 79:3903–3915. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Wang Z, Wei S, Liu Z and Chen G: Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 499:148–163. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Hou Q and Guo H: NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res. 397:1123112020. View Article : Google Scholar : PubMed/NCBI | |
Sodhi A and Biswas SK: Monocyte chemoattractant protein-1-induced activation of p42/44 MAPK and c-Jun in murine peritoneal macrophages: A potential pathway for macrophage activation. J Interferon Cytokine Res. 22:517–526. 2002. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK and Sodhi A: Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: Role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol. 2:1095–1107. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kuroda T, Kitadai Y, Tanaka S, Yang X, Mukaida N, Yoshihara M and Chayama K: Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res. 11:7629–7636. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mittal P, Wang L, Akimova T, Leach CA, Clemente JC, Sender MR, Chen Y, Turunen BJ and Hancock WW: The CCR2/MCP-1 chemokine pathway and lung adenocarcinoma. Cancers (Basel). 12:37232020. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Li WJ, Wei FQ, Wong TS, Lei WB, Zhu XL, Li J and Wen WP: Blockade of MCP-1/CCR4 signaling-induced recruitment of activated regulatory cells evokes an antitumor immune response in head and neck squamous cell carcinoma. Oncotarget. 7:37714–37727. 2016. View Article : Google Scholar : PubMed/NCBI | |
Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y and Dabrosin C: CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 21:3794–3805. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Smart C, Hu Q and Cheng N: Continuous delivery of neutralizing antibodies elevate CCL2 levels in mice bearing MCF10CA1d breast tumor xenografts. Transl Oncol. 10:734–743. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wichmann G, Körner C, Boehm A, Mozet C and Dietz A: Stimulation by monocyte chemoattractant protein-1 modulates the ex-vivo colony formation by head and neck squamous cell carcinoma cells. Anticancer Res. 35:3917–3924. 2015.PubMed/NCBI | |
Van Coillie E, Van Damme J and Opdenakker G: The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 10:61–86. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura T: The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 98:71–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
Laird BJA, Fallon M, Hjermstad MJ, Tuck S, Kaasa S, Klepstad P and McMillan DC: Quality of life in patients with advanced cancer: Differential association with performance status and systemic inflammatory response. J Clin Oncol. 34:2769–2775. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, Li J, Zu T, Liu X and Li H: Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep. 12:20–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Laning J, Hayashi M, Hancock PR, Rollins B and Dorf ME: Serologic analysis of the mouse beta chemokine JE/monocyte chemoattractant protein-1. J Immunol. 153:3708–3716. 1994.PubMed/NCBI | |
Peri G, Milanese C, Matteucci C, Ruco L, Zhou D, Sozzani S, Coletta I and Mantovani A: A new monoclonal antibody (5D3-F7) which recognizes human monocyte-chemotactic protein-1 but not related chemokines. Development of a sandwich ELISA and in situ detection of producing cells. J Immunol Methods. 174:249–257. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Bu X, Wang W, Ma T and Ma H: GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation. PLoS One. 9:e850582014. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M and Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 125:1276–1284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roy RM, Wuthrich M and Klein BS: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. J Immunol. 189:2545–2552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, Sumiyoshi T, Shibuya S, Tsuruyama T, Nakamura E, et al: CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 5:2920–2933. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lai SW, Liu YS, Lu DY and Tsai CF: Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin 1. Nutrients. 11:13432019. View Article : Google Scholar : PubMed/NCBI | |
Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H and Liu Z: Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 10:257–268. 2014. View Article : Google Scholar : PubMed/NCBI | |
Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L and Pienta KJ: Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67:9417–9424. 2007. View Article : Google Scholar : PubMed/NCBI |