1
|
Sharma P and Allison JP: Immune checkpoint
targeting in cancer therapy: Toward combination strategies with
curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Galon J and Bruni D: Approaches to treat
immune hot, altered and cold tumours with combination
immunotherapies. Nat Rev Drug Discov. 18:197–218. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yap TA, Parkes EE, Peng W, Moyers JT,
Curran MA and Tawbi HA: Development of immunotherapy combination
strategies in cancer. Cancer Discov. 11:1368–1397. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guillem JG, Chessin DB, Cohen AM, Shia J,
Mazumdar M, Enker W, Paty PB, Weiser MR, Klimstra D, Saltz L, et
al: Long-term oncologic outcome following preoperative combined
modality therapy and total mesorectal excision of locally advanced
rectal cancer. Ann Surg. 241:829–836; discussion 836–838. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Golden EB, Frances D, Pellicciotta I,
Demaria S, Helen Barcellos-Hoff M and Formenti SC: Radiation
fosters dose-dependent and chemotherapy-induced immunogenic cell
death. Oncoimmunology. 3:e285182014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Diamond JM, Vanpouille-Box C, Spada S,
Rudqvist NP, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y,
Formenti SC and Demaria S: Exosomes Shuttle TREX1-Sensitive
IFN-Stimulatory dsDNA from irradiated cancer cells to DCs. Cancer
Immunol Res. 6:910–920. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rodriguez-Ruiz ME, Vanpouille-Box C,
Melero I, Formenti SC and Demaria S: Immunological mechanisms
responsible for Radiation-Induced Abscopal effect. Trends Immunol.
39:644–655. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Reits EA, Hodge JW, Herberts CA, Groothuis
TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH,
Neijssen J, et al: Radiation modulates the peptide repertoire,
enhances MHC class I expression, and induces successful antitumor
immunotherapy. J Exp Med. 203:1259–1271. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Formenti SC, Rudqvist NP, Golden E, Cooper
B, Wennerberg E, Lhuillier C, Vanpouille-Box C, Friedman K, Ferrari
de Andrade L, Wucherpfennig KW, et al: Radiotherapy induces
responses of lung cancer to CTLA-4 blockade. Nat Med. 24:1845–1851.
2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Harding SM, Benci JL, Irianto J, Discher
DE, Minn AJ and Greenberg RA: Mitotic progression following DNA
damage enables pattern recognition within micronuclei. Nature.
548:466–470. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vanpouille-Box C, Alard A, Aryankalayil
MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN,
Formenti SC and Demaria S: DNA exonuclease Trex1 regulates
radiotherapy-induced tumour immunogenicity. Nat Commun.
8:156182017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yamazaki T, Kirchmair A, Sato A, Buqué A,
Rybstein M, Petroni G, Bloy N, Finotello F, Stafford L, Navarro
Manzano E, et al: Mitochondrial DNA drives abscopal responses to
radiation that are inhibited by autophagy. Nat Immunol.
21:1160–1171. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng X, Tubbs A, Zhang C, Tang M,
Sridharan S, Wang C, Jiang D, Su D, Zhang H, Chen Z, et al: ATR
inhibition potentiates ionizing radiation-induced interferon
response via cytosolic nucleic acid-sensing pathways. EMBO J.
39:e1040362020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sato H, Niimi A, Yasuhara T, Permata TBM,
Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, et al:
DNA double-strand break repair pathway regulates PD-L1 expression
in cancer cells. Nat Commun. 8:17512017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Marabelle A, Le DT, Ascierto PA, Di
Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M,
Penel N, Hansen AR, et al: Efficacy of Pembrolizumab in patients
with noncolorectal high Microsatellite Instability/Mismatch
Repair-Deficient cancer: Results from the Phase II KEYNOTE-158
Study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sunshine J and Taube JM: PD-1/PD-L1
inhibitors. Curr Opin Pharmacol. 23:32–38. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cancer Genome Atlas Network, .
Comprehensive molecular characterization of human colon and rectal
cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cancer Genome Atlas Network, .
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cancer Genome Atlas Network, . Genomic
classification of cutaneous melanoma. Cell. 161:1681–1696. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cancer Genome Atlas Network, .
Comprehensive genomic characterization of head and neck squamous
cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cancer Genome Atlas Research Network, .
Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H,
Robertson AG, Pashtan I, Shen R, et al: Integrated genomic
characterization of endometrial carcinoma. Nature. 497:67–73. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cancer Genome Atlas Research Network,
Albert Einstein College of Medicine Analytical Biological Services,
Barretos Cancer Hospital, Baylor College of Medicine, Beckman
Research Institute of City of Hope, Buck Institute for Research on
Aging, Canada's Michael Smith Genome Sciences Centre, Harvard
Medical School, Helen F. Graham Cancer Center & Research
Institute at Christiana Care Health Services, et al:
Integrated genomic and molecular characterization of cervical
cancer. Nature. 543:378–384. 2017.PubMed/NCBI
|
25
|
Pecorelli S: Revised FIGO staging for
carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol
Obstet. 105:103–104. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ebina Y, Mikami M, Nagase S, Tabata T,
Kaneuchi M, Tashiro H, Mandai M, Enomoto T, Kobayashi Y, Katabuchi
H, et al: Japan Society of Gynecologic Oncology guidelines 2017 for
the treatment of uterine cervical cancer. Int J Clin Oncol.
24:1–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Permata TBM, Sato H, Gu W, Kakoti S,
Uchihara Y, Yoshimatsu Y, Sato I, Kato R, Yamauchi M, Suzuki K, et
al: High linear energy transfer carbon-ion irradiation upregulates
PD-L1 expression more significantly than X-rays in human
osteosarcoma U2OS cells. J Radiat Res. 62:773–781. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shrivastav M, De Haro LP and Nickoloff JA:
Regulation of DNA double-strand break repair pathway choice. Cell
Res. 18:134–147. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mori Y, Sato H, Kumazawa T, Permata TBM,
Yoshimoto Y, Murata K, Noda SE, Kaminuma T, Ando K, Oike T, et al:
Analysis of radiotherapy-induced alteration of CD8+ T
cells and PD-L1 expression in patients with uterine cervical
squamous cell carcinoma. Oncol Lett. 21:4462021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Permata TBM, Hagiwara Y, Sato H, Yasuhara
T, Oike T, Gondhowiardjo S, Held KD, Nakano T and Shibata A: Base
excision repair regulates PD-L1 expression in cancer cells.
Oncogene. 38:4452–4466. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jazayeri A, Falck J, Lukas C, Bartek J,
Smith GC, Lukas J and Jackson SP: ATM- and cell cycle-dependent
regulation of ATR in response to DNA double-strand breaks. Nat Cell
Biol. 8:37–45. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rhind N: Changing of the guard: How ATM
hands off DNA double-strand break signaling to ATR. Mol Cell.
33:672–674. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kobayashi D, Oike T, Murata K, Irie D,
Hirota Y, Sato H, Shibata A and Ohno T: Induction of micronuclei in
cervical cancer treated with radiotherapy. J Pers Med. 10:1102020.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sato H, Jeggo PA and Shibata A: Regulation
of programmed death-ligand 1 expression in response to DNA damage
in cancer cells: Implications for precision medicine. Cancer Sci.
110:3415–3423. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chetty IJ, Martel MK, Jaffray DA, Benedict
SH, Hahn SM, Berbeco R, Deye J, Jeraj R, Kavanagh B, Krishnan S, et
al: Technology for innovation in radiation oncology. Int J Radiat
Oncol Biol Phys. 93:485–492. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lhuillier C, Rudqvist NP, Elemento O,
Formenti SC and Demaria S: Radiation therapy and anti-tumor
immunity: Exposing immunogenic mutations to the immune system.
Genome Med. 11:402019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dovedi SJ, Adlard AL, Lipowska-Bhalla G,
McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M,
Stewart R, et al: Acquired resistance to fractionated radiotherapy
can be overcome by concurrent PD-L1 blockade. Cancer Res.
74:5458–5468. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Patel KR, Martinez A, Stahl JM, Logan SJ,
Perricone AJ, Ferris MJ, Buchwald ZS, Chowdhary M, Delman KA,
Monson DK, et al: Increase in PD-L1 expression after pre-operative
radiotherapy for soft tissue sarcoma. Oncoimmunology.
7:e14421682018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lim SH, Hong M, Ahn S, Choi YL, Kim KM, Oh
D, Ahn YC, Jung SH, Ahn MJ, Park K, et al: Changes in tumour
expression of programmed death-ligand 1 after neoadjuvant
concurrent chemoradiotherapy in patients with squamous oesophageal
cancer. Eur J Cancer. 52:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et
al: Durvalumab after chemoradiotherapy in Stage III Non-Small-Cell
lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et
al: Overall survival with Durvalumab after chemoradiotherapy in
Stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kwon ED, Drake CG, Scher HI, Fizazi K,
Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R,
Mahammedi H, et al: Ipilimumab versus placebo after radiotherapy in
patients with metastatic castration-resistant prostate cancer that
had progressed after docetaxel chemotherapy (CA184-043): A
multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol.
15:700–712. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ludmir EB, McCaw ZR, Wei LJ, Re: Karim
Fizazi, Charles G. Drake, Tomasz M. Beer, et al: Final Analysis of
the Ipilimumab Versus Placebo Following Radiotherapy Phase III
Trial in Postdocetaxel Metastatic Castration-resistant Prostate
Cancer Identifies an Excess of Long-term Survivors. Eur Urol. In
press. https://doi.org/10.1016/j.eururo.2020.07.032Interpreting
the effect of Ipilimumab following radiotherapy for patients with
Postdocetaxel metastatic Castration-resistant Prostate cancer. Eur
Urol, 79, e10-e11, 2021. PubMed/NCBI
|
44
|
Shibata A and Jeggo PA: DNA double-strand
break repair in a cellular context. Clin Oncol (R Coll Radiol).
26:243–249. 2014. View Article : Google Scholar : PubMed/NCBI
|