1
|
Warnakulasuriya S: Global epidemiology of
oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sarkis SA, Abdullah BH, Abdul Majeed BA
and Talabani NG: Immunohistochemical expression of epidermal growth
factor receptor (EGFR) in oral squamous cell carcinoma in relation
to proliferation, apoptosis, angiogenesis and lymphangiogenesis.
Head Neck Oncol. 2:132010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yu T, Liu K, Wu Y, Fan J, Chen J, Li C,
Yang Q and Wang Z: MicroRNA-9 inhibits the proliferation of oral
squamous cell carcinoma cells by suppressing expression of CXCR4
via the Wnt/β-catenin signaling pathway. Oncogene. 33:5017–5027.
2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hu J, He Y, Yan M, Zhu C, Ye W, Zhu H,
Chen W, Zhang C and Zhang Z: Dose dependent activation of retinoic
acid-inducible gene-I promotes both proliferation and apoptosis
signals in human head and neck squamous cell carcinoma. PLoS One.
8:e582732013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Uchida F, Uzawa K, Kasamatsu A, Takatori
H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H and Bukawa H:
Overexpression of cell cycle regulator CDCA3 promotes oral cancer
progression by enhancing cell proliferation with prevention of
G1 phase arrest. BMC Cancer. 12:3212012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schwefel D, Fröhlich C, Eichhorst J,
Wiesner B, Behlke J, Aravind L and Daumke O: Structural basis of
oligomerization in septin-like GTPase of immunity-associated
protein 2 (GIMAP2). Proc Natl Acad Sci USA. 107:20299–20304. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Schwefel D, Arasu BS, Marino SF, Lamprecht
B, Köchert K, Rosenbaum E, Eichhorst J, Wiesner B, Behlke J, Rocks
O, et al: Structural insights into the mechanism of GTPase
activation in the GIMAP family. Structure. 21:550–559. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Nitta T and Takahama Y: The lymphocyte
guard-IANs: Regulation of lymphocyte survival by IAN/GIMAP family
proteins. Trends Immunol. 28:58–65. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liau WS, Tan SH, Ngoc PC, Wang CQ,
Tergaonkar V, Feng H, Gong Z, Osato M, Look AT and Sanda T:
Aberrant activation of the GIMAP enhancer by oncogenic
transcription factors in T-cell acute lymphoblastic leukemia.
Leukemia. 31:1798–1807. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Schnell S, Demolliere C, van den Berk P
and Jacobs H: Gimap4 accelerates T-cell death. Blood. 108:591–599.
2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Patterson AR, Endale M, Lampe K, Aksoylar
HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z,
et al: Gimap5-dependent inactivation of GSK3β is required for
CD4(+) T cell homeostasis and prevention of immune pathology. Nat
Commun. 9:4302018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nitta T, Nasreen M, Seike T, Goji A,
Ohigashi I, Miyazaki T, Ohta T, Kanno M and Takahama Y: IAN family
critically regulates survival and development of T lymphocytes.
PLoS Biol. 4:e1032006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Patterson AR, Bolcas P, Lampe K, Cantrell
R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Hershey
GK and Hoebe K: Loss of GTPase of immunity-associated protein 5
(Gimap5) promotes pathogenic CD4(+) T-cell development and allergic
airway disease. J Allergy Clin Immunol. 143:245–257.e6. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kasamatsu A, Uzawa K, Nakashima D, Koike
H, Shiiba M, Bukawa H, Yokoe H and Tanzawa H: Galectin-9 as a
regulator of cellular adhesion in human oral squamous cell
carcinoma cell lines. Int J Mol Med. 16:269–273. 2005.PubMed/NCBI
|
15
|
Endo Y, Uzawa K, Mochida Y, Shiiba M,
Bukawa H, Yokoe H and Tanzawa H: Sarcoendoplasmic reticulum Ca(2+)
ATPase type 2 downregulated in human oral squamous cell carcinoma.
Int J Cancer. 110:225–231. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shiiba M, Ishige S, Saito Y, Shimizu T,
Minakawa Y, Kasamatsu A, Ogawara K, Uzawa K and Tanzawa H:
Down-regulated expression of family with sequence similarity 3,
member B (FAM3B), in oral squamous cell carcinoma. Int J Oral Sci
Int. 9:9–16. 2012. View Article : Google Scholar
|
17
|
Shida-Sakazume T, Endo-Sakamoto Y, Unozawa
M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba
M, Tanzawa H and Uzawa K: Lysophosphatidylcholine acyltransferase1
overexpression promotes oral squamous cell carcinoma progression
via enhanced biosynthesis of platelet-activating factor. PLoS One.
10:e01201432015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Saito T, Kasamatsu A, Ogawara K, Miyamoto
I, Saito K, Iyoda M, Suzuki T, Endo-Sakamoto Y, Shiiba M, Tanzawa H
and Uzawa K: Semaphorin7A promotion of tumoral growth and
metastasis in human oral cancer by regulation of G1 cell
cycle and matrix metalloproteases: Possible contribution to tumoral
angiogenesis. PLoS One. 10:e01379232015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Takahara T, Kasamatsu A, Yamatoji M, Iyoda
M, Kasama H, Saito T, Takeuchi S, Endo-Sakamoto Y, Shiiba M,
Tanzawa H and Uzawa K: SIPA1 promotes invasion and migration in
human oral squamous cell carcinoma by ITGB1 and MMP7. Exp Cell Res.
352:357–363. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Koide N, Kasamatsu A, Endo-Sakamoto Y,
Ishida S, Shimizu T, Kimura Y, Miyamoto I, Yoshimura S, Shiiba M,
Tanzawa H and Uzawa K: Evidence for critical role of lymphocyte
cytosolic protein 1 in oral cancer. Sci Rep. 7:433792017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Minakawa Y, Kasamatsu A, Koike H, Higo M,
Nakashima D, Kouzu Y, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H
and Uzawa K: Kinesin family member 4A: A potential predictor for
progression of human oral cancer. PLoS One. 8:e859512013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Baba T, Sakamoto Y, Kasamatsu A, Minakawa
Y, Yokota S, Higo M, Yokoe H, Ogawara K, Shiiba M, Tanzawa H and
Uzawa K: Persephin: A potential key component in human oral cancer
progression through the RET receptor tyrosine
kinase-mitogen-activated protein kinase signaling pathway. Mol
Carcinog. 54:608–617. 2015. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Uzawa K, Kasamatsu A, Saito T, Takahara T,
Minakawa Y, Koike K, Yamatoji M, Nakashima D, Higo M, Sakamoto Y,
et al: Long-term culture of human odontoma-derived cells with a Rho
kinase inhibitor. Exp Cell Res. 347:232–240. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Toeda Y, Kasamatsu A, Koike K,
Endo-Sakamoto Y, Fushimi K, Kasama H, Yamano Y, Shiiba M, Tanzawa H
and Uzawa K: FBLIM1 enhances oral cancer malignancy via modulation
of the epidermal growth factor receptor pathway. Mol Carcinog.
57:1690–1697. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kimura Y, Kasamatsu A, Nakashima D,
Yamatoji M, Minakawa Y, Koike K, Fushimi K, Higo M, Endo-Sakamoto
Y, Shiiba M, et al: ARNT2 regulates tumoral growth in oral squamous
cell carcinoma. J Cancer. 7:702–710. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Miyamoto I, Kasamatsu A, Yamatoji M,
Nakashima D, Saito K, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H
and Uzawa K: Kinesin family member 14 in human oral cancer: A
potential biomarker for tumoral growth. Biochem Biophys Rep.
3:26–31. 2015.PubMed/NCBI
|
27
|
Uchida F, Uzawa K, Kasamatsu A, Takatori
H, Sakamoto Y, Ogawara K, Shiiba M, Bukawa H and Tanzawa H:
Overexpression of CDCA2 in human squamous cell carcinoma:
correlation with prevention of G1 phase arrest and
apoptosis. PLoS One. 8:e563812013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hayashi F, Kasamatsu A, Endo-Sakamoto Y,
Eizuka K, Hiroshima K, Kita A, Saito T, Koike K, Tanzawa H and
Uzawa K: Increased expression of tripartite motif (TRIM) like 2
promotes tumoral growth in human oral cancer. Biochem Biophys Res
Commun. 508:1133–1138. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rader J, Russell MR, Hart LS, Nakazawa MS,
Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin
SJ, et al: Dual CDK4/CDK6 inhibition induces cell-cycle arrest and
senescence in neuroblastoma. Clin Cancer Res. 19:6173–6182. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fry DW, Bedford DC, Harvey PH, Fritsch A,
Keller PR, Wu Z, Dobrusin E, Leopold WR, Fattaey A and Garrett MD:
Cell cycle and biochemical effects of PD 0183812. A potent
inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J Biol
Chem. 276:16617–16623. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Patnaik A, Rosen LS, Tolaney SM, Tolcher
AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW,
Hilton JF, et al: Efficacy and safety of abemaciclib, an inhibitor
of CDK4 and CDK6, for patients with breast cancer, non-small cell
lung cancer, and other solid tumors. Cancer Discov. 6:740–753.
2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zi X and Agarwal R: Silibinin decreases
prostate-specific antigen with cell growth inhibition via
G1 arrest, leading to differentiation of prostate
carcinoma cells: Implications for prostate cancer intervention.
Proc Natl Acad Sci USA. 96:7490–7495. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hamilton E and Infante JR: Targeting
CDK4/6 in patients with cancer. Cancer Treat Rev. 45:129–138. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Nevins JR: The Rb/E2F pathway and cancer.
Hum Mol Genet. 10:699–703. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hickman ES, Moroni MC and Helin K: The
role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev.
12:60–66. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Adams JM and Cory S: The Bcl-2 apoptotic
switch in cancer development and therapy. Oncogene. 26:1324–1337.
2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schwefel D and Daumke O: GTP-dependent
scaffold formation in the GTPase of immunity associated protein
family. Small GTPases. 2:27–30. 2011. View Article : Google Scholar : PubMed/NCBI
|