1
|
Budhu A, Forgues M, Ye QH, Jia HL, He P,
Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY and Wang XW:
Prediction of venous metastases, recurrence, and prognosis in
hepatocellular carcinoma based on a unique immune response
signature of the liver microenvironment. Cancer Cell. 10:99–111.
2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Taketomi A, Toshima T, Kitagawa D,
Motomura T, Takeishi K, Mano Y, Kayashima H, Sugimachi K, Aishima
S, Yamashita Y, et al: Predictors of extrahepatic recurrence after
curative hepatectomy for hepatocellular carcinoma. Ann Surg Oncol.
17:2740–2746. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xiao S, Chang RM, Yang MY, Lei X, Liu X,
Gao WB, Xiao JL and Yang LY: Actin-like 6A predicts poor prognosis
of hepatocellular carcinoma and promotes metastasis and
epithelial-mesenchymal transition. Hepatology. 63:1256–1271. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Deng GL, Zeng S and Shen H: Chemotherapy
and target therapy for hepatocellular carcinoma: New advances and
challenges. World J Hepatol. 7:787–798. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: Epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ogunwobi OO, Harricharran T, Huaman J,
Galuza A, Odumuwagun O, Tan Y, Ma GX and Nguyen MT: Mechanisms of
hepatocellular carcinoma progression. World J Gastroenterol.
25:2279–2293. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Maluccio M and Covey A: Recent progress in
understanding, diagnosing, and treating hepatocellular carcinoma.
CA Cancer J Clin. 62:394–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Morise Z, Kawabe N, Tomishige H, Nagata H,
Kawase J, Arakawa S, Yoshida R and Isetani M: Recent advances in
the surgical treatment of hepatocellular carcinoma. World J
Gastroenterol. 20:14381–14392. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gallicchio R, Nardelli A, Mainenti P,
Nappi A, Capacchione D, Simeon V, Sirignano C, Abbruzzi F, Barbato
F, Landriscina M and Storto G: Therapeutic strategies in HCC:
Radiation modalities. Biomed Res Int. 2016:12953292016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Giannelli G, Koudelkova P, Dituri F and
Mikulits W: Role of epithelial to mesenchymal transition in
hepatocellular carcinoma. J Hepatol. 65:798–808. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight. Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Chai S, Ng KY, Tong M, Lau EY, Lee TK,
Chan KW, Yuan YF, Cheung TT, Cheung ST, Wang XQ, et al: Octamer
4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in
liver cancer stem cells. Hepatology. 64:2062–2076. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang S and Ng MK: Gene-microRNA network
module analysis for ovarian cancer. BMC Syst Biol. 10 (Suppl
4):S1172016. View Article : Google Scholar
|
15
|
Chen J, Zhang H, Chen Y, Qiao G, Jiang W,
Ni P, Liu X and Ma L: miR-598 inhibits metastasis in colorectal
cancer by suppressing JAG1/Notch2 pathway stimulating EMT. Exp Cell
Res. 352:104–112. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao
Y, Cheng Y, Yang M, Wang Q, Feng X, et al: MiRNA-194 activates the
Wnt/β-catenin signaling pathway in gastric cancer by targeting the
negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao Z, Fan X, Jiang L, Xu Z, Xue L, Zhan
Q and Song Y: miR-503-3p promotes epithelial-mesenchymal transition
in breast cancer by directly targeting SMAD2 and E-cadherin. J
Genet Genomics. 44:75–84. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D,
Gu D, Huang JA and Liu Z: CD73/NT5E is a target of miR-30a-5p and
plays an important role in the pathogenesis of non-small cell lung
cancer. Mol Cancer. 16:342017. View Article : Google Scholar : PubMed/NCBI
|
19
|
O'Sullivan TN, Wu XS, Rachel RA, Huang JD,
Swing DA, Matesic LE, Hammer JA III, Copeland NG and Jenkins NA:
dsu functions in a MYO5A-independent pathway to suppress the coat
color of dilute mice. Proc Natl Acad Sci USA. 101:16831–16836.
2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen
C, Hu Y, Yu Y, Xia R, Shen J, et al: Rno-miR-224-5p contributes to
2,2′,4,4′-tetrabromodiphenyl ether-induced low triiodothyronine in
rats by targeting deiodinases. Chemosphere. 246:1257742020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Qiao W, Li D, Shi Q, Wang H, Wang H and
Guo J: miR-224-5p protects dental pulp stem cells from apoptosis by
targeting Rac1. Exp Ther Med. 19:9–18. 2020.PubMed/NCBI
|
22
|
Zang CS, Huang HT, Qiu J, Sun J, Ge RF and
Jiang LW: MiR-224-5p targets EGR2 to promote the development of
papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci.
24:4890–4900. 2020.PubMed/NCBI
|
23
|
Peng X, Guo C, Wu Y, Ying M, Chang R, Song
L, Zhan L and Zhan X: miR-224-5p regulates the proliferation,
migration and invasion of pancreatic mucinous cystadenocarcinoma by
targeting PTEN. Mol Med Rep. 23:3462021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qin Z, Hu H, Sun W, Chen L, Jin S, Xu Q,
Liu Y, Yu L and Zeng S: miR-224-5p contained in urinary
extracellular vesicles regulates PD-L1 expression by inhibiting
cyclin D1 in renal cell carcinoma cells. Cancers (Basel).
13:6182021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Wang P, Zhao L, Chen X, Lin Z,
Zhang L and Li Z: miR-224-5p carried by human umbilical cord
mesenchymal stem cells-derived exosomes regulates autophagy in
breast cancer cells via HOXA5. Front Cell Dev Biol. 9:6791852021.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li J, Liu X, Li C and Wang W: miR-224-5p
inhibits proliferation, migration, and invasion by targeting
PIK3R3/AKT3 in uveal melanoma. J Cell Biochem. 120:12412–12421.
2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gan BL, Zhang LJ, Gao L, Ma FC, He RQ,
Chen G, Ma J, Zhong JC and Hu XH: Downregulation of miR-224-5p in
prostate cancer and its relevant molecular mechanism via TCGA, GEO
database and in silico analyses. Oncol Rep. 40:3171–3188.
2018.PubMed/NCBI
|
28
|
Zheng SQ, Qi Y, Wu J, Zhou FL, Yu H, Li L,
Yu B, Chen XF and Zhang W: CircPCMTD1 acts as the sponge of
miR-224-5p to Promote glioma progression. Front Oncol. 9:3982019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Miao K, Liu SD, Huang WX and Dong H:
MiR-224 executes a tumor accelerative role during hepatocellular
carcinoma malignancy by targeting cytoplasmic polyadenylation
element-binding protein 3. Pharmacology. 105:477–487. 2020.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang L, Wei C, Li Y, He X and He M:
miR-224 is an early-stage biomarker of hepatocellular carcinoma
with miR-224 and miR-125b as prognostic biomarkers. Biomark Med.
14:1485–1500. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu M, Deng X, Zhong Y, Hu L, Zhang X,
Liang Y, Li X and Ye X: MafF is regulated via the
circ-ITCH/miR-224-5p axis and acts as a tumor suppressor in
hepatocellular carcinoma. Oncol Res. 28:299–309. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ma D, Tao X, Gao F, Fan C and Wu D:
miR-224 functions as an onco-miRNA in hepatocellular carcinoma
cells by activating AKT signaling. Oncol Lett. 4:483–488. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Damek-Poprawa M, Diemer T, Lopes VS, Lillo
C, Harper DC, Marks MS, Wu Y, Sparrow JR, Rachel RA, Williams DS
and Boesze-Battaglia K: Melanoregulin (MREG) modulates lysosome
function in pigment epithelial cells. J Biol Chem. 284:10877–10889.
2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ohbayashi N, Maruta Y, Ishida M and Fukuda
M: Melanoregulin regulates retrograde melanosome transport through
interaction with the RILP-p150Glued complex in melanocytes. J Cell
Sci. 125:1508–1518. 2012.PubMed/NCBI
|
35
|
Meng X, Dong Y, Yu X, Wang D, Wang S, Chen
S and Pang S: MREG suppresses thyroid cancer cell invasion and
proliferation by inhibiting Akt-mTOR signaling. Biochem Biophys Res
Commun. 491:72–78. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fornes O, Castro-Mondragon JA, Khan A, van
der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M,
Baranašić D, et al: JASPAR 2020: Update of the open-access database
of transcription factor binding profiles. Nucleic Acids Res.
48:D87–D92. 2020.PubMed/NCBI
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Knoll S, Fürst K, Kowtharapu B, Schmitz U,
Marquardt S, Wolkenhauer O, Martin H and Pützer BM: E2F1 induces
miR-224/452 expression to drive EMT through TXNIP downregulation.
EMBO Rep. 15:1315–1329. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Farra R, Grassi G, Tonon F, Abrami M,
Grassi M, Pozzato G, Fiotti N, Forte G and Dapas B: The role of the
transcription factor E2F1 in hepatocellular carcinoma. Curr Drug
Deliv. 14:272–281. 2017.PubMed/NCBI
|
40
|
Zhu Q, Gong L, Wang J, Tu Q, Yao L, Zhang
JR, Han XJ, Zhu SJ, Wang SM, Li YH and Zhang W: miR-10b exerts
oncogenic activity in human hepatocellular carcinoma cells by
targeting expression of CUB and sushi multiple domains 1 (CSMD1).
BMC Cancer. 16:8062016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|