Neoantigens and their potential applications in tumor immunotherapy (Review)
- Authors:
- Xianzhu Fang
- Zhiliang Guo
- Jinqing Liang
- Jiao Wen
- Yuanyuan Liu
- Xiumei Guan
- Hong Li
-
Affiliations: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Orthopedic, The 80th Group Army Hospital of Chinese People's Liberation Army, Weifang, Shandong 261021, P.R. China - Published online on: January 21, 2022 https://doi.org/10.3892/ol.2022.13208
- Article Number: 88
-
Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tomasetti C and Vogelstein B: Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 347:78–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Powers S, Zhu W and Hannun YA: Substantial contribution of extrinsic risk factors to cancer development. Nature. 529:43–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Compagni A and Christofori G: Recent advances in research on multistage tumorigenesis. Br J Cancer. 83:1–5. 2000. View Article : Google Scholar : PubMed/NCBI | |
Paul S and Régulier E: Molecular basis of oncogenesis. Ann Biol Clin (Paris). 59:393–402. 2001.(In French). PubMed/NCBI | |
Spandidos DA: Oncogenes and tumor suppressor genes as paradigms in oncogenesis. J BUON. 12 (Suppl 1):S9–S12. 2007.PubMed/NCBI | |
Shen L, Shi Q and Wang W: Double agents: Genes with both oncogenic and tumor-suppressor functions. Oncogenesis. 7:252018. View Article : Google Scholar : PubMed/NCBI | |
De Plaen E, Lurquin C, Van Pel A, Mariamé B, Szikora JP, Wölfel T, Sibille C, Chomez P and Boon T: Immunogenic (tum-) variants of mouse tumor P815: Cloning of the gene of tum-antigen P91A and identification of the tum-mutation. Proc Natl Acad USA. 85:2274–2278. 1988. View Article : Google Scholar : PubMed/NCBI | |
Wirth TC and Kühnel F: Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front Immunol. 8:18482017. View Article : Google Scholar : PubMed/NCBI | |
Finn OJ: Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res. 5:347–354. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jongsma MLM, Guarda G and Spaapen RM: The regulatory network behind MHC class I expression. Mol Immunol. 113:16–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shastri N, Nagarajan N, Lind KC and Kanaseki T: Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum. Curr Opin Immunol. 26:123–127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Cherukuri Y, Wickland DP, Sarangi V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson KL, et al: HLA class-I and II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology. 9:17449472020. View Article : Google Scholar : PubMed/NCBI | |
Axelrod ML, Cook RS, Johnson DB and Balko JM: Biological consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res. 25:2392–2402. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dantoing E, Piton N, Salaün M, Thiberville L and Guisier F: Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations. Int J Mol Sci. 22:62882021. View Article : Google Scholar : PubMed/NCBI | |
Kok VC: Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer. Front Oncol. 10:2682020. View Article : Google Scholar : PubMed/NCBI | |
Raphael I, Kumar R, McCarl LH, Shoger K, Wang L, Sandlesh P, Sneiderman CT, Allen J, Zhai S, Campagna ML, et al: TIGIT and PD-1 immune checkpoint pathways are associated with patient outcome and anti-tumor immunity in glioblastoma. Front Immunol. 12:6371462021. View Article : Google Scholar : PubMed/NCBI | |
Twomey JD and Zhang B: Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23:392021. View Article : Google Scholar : PubMed/NCBI | |
Miller A, Asmann Y, Cattaneo L, Braggio E, Keats J, Auclair D, Lonial S; MMRF CoMMpass Network, ; Russell SJ and Stewart AK: High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 7:e6122017. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Qin S, Zhao W, Yu S, Chu Q and Wu K: The role of neoantigen in immune checkpoint blockade therapy. Exp Hematol Oncol. 7:282018. View Article : Google Scholar : PubMed/NCBI | |
van den Bulk J, Verdegaal EME, Ruano D, Ijsselsteijn ME, Visser M, van der Breggen R, Duhen T, van der Ploeg M, de Vries NL, Oosting J, et al: Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Med. 11:872019. View Article : Google Scholar : PubMed/NCBI | |
Yarchoan M, Johnson BA III, Lutz ER, Laheru DA and Jaffee EM: Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 17:5692017. View Article : Google Scholar : PubMed/NCBI | |
Blass E and Ott PA: Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 18:215–229. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pardi N, Hogan MJ, Porter FW and Weissman D: mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 17:261–279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, Ivey G, Li YF, El-Gamil M, Lalani A, et al: Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9:1022–1035. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klebanoff CA and Wolchok JD: Shared cancer neoantigens: Making private matters public. J Exp Med. 215:5–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Garijo A, Fajardo CA and Gros A: Determinants for neoantigen identification. Front Immunol. 10:13922019. View Article : Google Scholar : PubMed/NCBI | |
Hutchison S and Pritchard AL: Identifying neoantigens for use in immunotherapy. Mamm Genome. 29:714–730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zou Z, Du J, Su S, Shao J, Meng F, Yang J, Xu Q, Ding N, Yang Y, et al: Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest. 129:2056–2070. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hao Q, Wei P, Shu Y, Zhang YG, Xu H and Zhao JN: Improvement of neoantigen identification through convolution neural network. Front Immunol. 12:6821032021. View Article : Google Scholar : PubMed/NCBI | |
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, Busby M, Duke F, Yang A, Young L, et al: Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. Dec 17–2018.(Epub ahead of print). PubMed/NCBI | |
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB and Wang XY: Therapeutic cancer vaccines: Past, present, and future. Adv Cancer Res. 119:421–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B and Kuriyan J: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 289:1938–1942. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fuster LM and Sandler AB: Select clinical trials of erlotinib (OSI-774) in non-small-cell lung cancer with emphasis on phase III outcomes. Clin Lung Cancer. 6 (Suppl 1):S24–S29. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yang JC and Restifo NP: Cancer immunotherapy: Moving beyond current vaccines. Nat Med. 10:909–915. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Gruijl TD, van den Eertwegh AJ, Pinedo HM and Scheper RJ: Whole-cell cancer vaccination: From autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 57:1569–1577. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chiang CL, Hagemann AR, Leskowitz R, Mick R, Garrabrant T, Czerniecki BJ, Kandalaft LE, Powell DJ Jr and Coukos G: Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PLoS One. 6:e287322011. View Article : Google Scholar : PubMed/NCBI | |
Bencherif SA, Warren Sands R, Ali OA, Li WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff G and Mooney DJ: Injectable cryogel-based whole-cell cancer vaccines. Nat Commun. 6:75562015. View Article : Google Scholar : PubMed/NCBI | |
Lim YT: Vaccine adjuvant materials for cancer immunotherapy and control of infectious disease. Clin Exp Vaccine Res. 4:54–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Zhang F, Ni Q, Niu G and Chen X: Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano. 11:2387–2392. 2017. View Article : Google Scholar : PubMed/NCBI | |
Obeid J, Hu Y and Slingluff CL Jr: Vaccines, adjuvants, and dendritic cell activators-current status and future challenges. Semin Oncol. 42:549–561. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Samandi LZ, Wang Z, Chen ZJ and Gao J: Synthetic nanovaccines for immunotherapy. J Control Release. 263:200–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Izumoto S: Peptide vaccine. Adv Exp Med Biol. 746:166–177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y, Zaidi N, et al: Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 38:320–332. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, Niu G, Su T, Zhu G, Lu G, et al: A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv. 6:eaaw60712020. View Article : Google Scholar : PubMed/NCBI | |
Esposito A, Criscitiello C and Curigliano G: Immune checkpoint inhibitors with radiotherapy and locoregional treatment: Synergism and potential clinical implications. Curr Opin Oncol. 27:445–451. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ott PA, Hu-Lieskovan S, Chmielowski B, Govindan R, Naing A, Bhardwaj N, Margolin K, Awad MM, Hellmann MD, Lin JJ, et al: A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell. 183:347–362.e24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shaw SM, Middleton J, Wigglesworth K, Charlemagne A, Schulz O, Glossop MS, Whalen GF, Old R, Westby M, Pickford C, et al: AGI-134: A fully synthetic α-Gal glycolipid that converts tumors into in situ autologous vaccines, induces anti-tumor immunity and is synergistic with an anti-PD-1 antibody in mouse melanoma models. Cancer Cell Int. 19:3462019. View Article : Google Scholar : PubMed/NCBI | |
Fennemann FL, de Vries IJM, Figdor CG and Verdoes M: Attacking tumors from all sides: Personalized multiplex vaccines to tackle intratumor heterogeneity. Front Immunol. 10:8242019. View Article : Google Scholar : PubMed/NCBI | |
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Zhang W, Li Z, Zheng Y, Wang Y, Chen G, Qiu L, Ke K, Su X, Cai Z, et al: Personalized neoantigen-based immunotherapy for advanced collecting duct carcinoma: Case report. J Immunother Cancer. 8:e0002172020. View Article : Google Scholar : PubMed/NCBI | |
Caron E, Aebersold R, Banaei-Esfahani A, Chong C and Bassani-Sternberg M: A case for a human immuno-peptidome project consortium. Immunity. 47:203–208. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD and Snyder A: Making it personal: Neoantigen vaccines in metastatic melanoma. Immunity. 47:221–223. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Zhou L, Mi QS and Jiang A: DC-based vaccines for cancer immunotherapy. Vaccines (Basel). 8:7062020. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi L, Zhang X, Ding Z, Xu H and Yang L: Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol Immunother. 69:135–145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zhang R, Zhang X and Yang L: Personalized neoantigen-Pulsed DC vaccines: Advances in clinical applications. Front Oncol. 11:7017772021. View Article : Google Scholar : PubMed/NCBI | |
Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER and Linette GP: Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 348:803–808. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charles J, Chaperot L, Hannani D, Bruder Costa J, Templier I, Trabelsi S, Gil H, Moisan A, Persoons V, Hegelhofer H, et al: An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology. 9:17388122020. View Article : Google Scholar : PubMed/NCBI | |
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E and Melero I: An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov. 17:751–767. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lopes A, Vandermeulen G and Préat V: Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 38:1462019. View Article : Google Scholar : PubMed/NCBI | |
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, et al: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 547:222–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ, Jafferji MS, et al: mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 130:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI | |
Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, Sahm F, Sanghvi K, Tan CL, Poschke I, et al: A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 592:463–468. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tondini E, Arakelian T, Oosterhuis K, Camps M, van Duikeren S, Han W, Arens R, Zondag G, van Bergen J and Ossendorp F: A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control. Oncoimmunology. 8:16525392019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Ren J, Liu W, Jiang G and Hu R: CpG oligodeoxynucleotide developed to activate primate immune responses promotes antitumoral effects in combination with a neoantigen-based mRNA cancer vaccine. Drug Des Devel Ther. 15:3953–3963. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duperret EK, Perales-Puchalt A, Stoltz R, G HH, Mandloi N, Barlow J, Chaudhuri A, Sardesai NY and Weiner DB: A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class I CD8+ T-cell responses, impacting tumor challenge. Cancer Immunol Res. 7:174–182. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Wu X: Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med. 9:8086–8121. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tan CL, Kuchroo JR, Sage PT, Liang D, Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, et al: PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J Exp Med. 218:e201822322021. View Article : Google Scholar : PubMed/NCBI | |
Buchbinder EI and Desai A: CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wisdom AJ, Mowery YM, Riedel RF and Kirsch DG: Rationale and emerging strategies for immune checkpoint blockade in soft tissue sarcoma. Cancer. 124:3819–3829. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Jin T, Zhu Y and Dai C: Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res. 37:1102018. View Article : Google Scholar : PubMed/NCBI | |
Pianko MJ, Liu Y, Bagchi S and Lesokhin AM: Immune checkpoint blockade for hematologic malignancies: A review. Stem Cell Investig. 4:322017. View Article : Google Scholar : PubMed/NCBI | |
Kabacaoglu D, Ciecielski KJ, Ruess DA and Algül H: Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: Current limitations and future options. Front Immunol. 9:18782018. View Article : Google Scholar : PubMed/NCBI | |
Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, et al: Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7:264–276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI | |
Isaacsson Velho P and Antonarakis ES: PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol. 11:475–486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Guo G, Guan H, Yu Y, Lu J and Yu J: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Chen M, Nie H and Yuan Y: PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother. 15:1111–1122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, Guo C, Wu X, Li Y, Li X, et al: Neoantigen vaccine: An emerging tumor immunotherapy. Mol Cancer. 18:1282019. View Article : Google Scholar : PubMed/NCBI | |
Liu CJ, Schaettler M, Blaha DT, Bowman-Kirigin JA, Kobayashi DK, Livingstone AJ, Bender D, Miller CA, Kranz DM, Johanns TM and Dunn GP: Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro Oncol. 22:1276–1288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duraiswamy J, Kaluza KM, Freeman GJ and Coukos G: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73:3591–3603. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rohaan MW, Wilgenhof S and Haanen JBAG: Adoptive cellular therapies: The current landscape. Virchows Arch. 474:449–461. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rath JA and Arber C: Engineering strategies to enhance TCR-based adoptive T cell therapy. Cells. 9:14852020. View Article : Google Scholar : PubMed/NCBI | |
Weber J, Atkins M, Hwu P, Radvanyi L, Sznol M and Yee C; Immunotherapy Task Force of the NCI Investigational Drug Steering Committee, : White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes: A report of the CTEP subcommittee on adoptive cell therapy. Clin Cancer Res. 17:1664–1673. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rohaan MW, van den Berg JH, Kvistborg P and Haanen JBAG: Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: A viable treatment option. J Immunother Cancer. 6:1022018. View Article : Google Scholar : PubMed/NCBI | |
van den Berg JH, Heemskerk B, van Rooij N, Gomez-Eerland R, Michels S, van Zon M, de Boer R, Bakker NAM, Jorritsma-Smit A, van Buuren MM, et al: Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: Boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer. 8:e0008482020. View Article : Google Scholar : PubMed/NCBI | |
Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, et al: Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 24:724–730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al: T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 375:2255–2262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Zhang J, Hu H, Qin H, Liao X, Wang F, Zhang W, Yin Q, Su X, He Y, et al: Anti-tumour effect of neo-antigen-reactive T cells induced by RNA mutanome vaccine in mouse lung cancer. J Cancer Res Clin Oncol. 147:3255–3268. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, et al: Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 20:3401–3410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, et al: Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 22:433–438. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bailey P, Chang DK, Forget MA, Lucas FA, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, et al: Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep. 6:358482016. View Article : Google Scholar : PubMed/NCBI |