Update on the role of C1GALT1 in cancer (Review)
- Authors:
- Tong Xia
- Ting Xiang
- Hailong Xie
-
Affiliations: Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China - Published online on: January 27, 2022 https://doi.org/10.3892/ol.2022.13217
- Article Number: 97
-
Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lis H and Sharon N: Protein glycosylation. Structural and functional aspects. Eur J Biochem. 218:1–27. 1993. View Article : Google Scholar : PubMed/NCBI | |
Spiro RG: Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12:43R–56R. 2002. View Article : Google Scholar : PubMed/NCBI | |
Arike L and Hansson GC: The Densely O-Glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J Mol Biol. 428:3221–3229. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM and Huang MC: C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One. 9:e949952014. View Article : Google Scholar : PubMed/NCBI | |
Ju T and Cummings RD: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 99:16613–16618. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Otto VI and Cummings RD: The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 50:1770–1791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Galvan M, Tsuboi S, Fukuda M and Baum LG: Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem. 275:16730–16737. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Cummings RD and Canfield WM: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem. 277:169–177. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Brewer K, D'Souza A, Cummings RD and Canfield WM: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 277:178–186. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, et al: C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 122:1649–1657. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vajaria BN and Patel PS: Glycosylation: A hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–35489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W and Xia L: Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med. 217:e201823252020. View Article : Google Scholar : PubMed/NCBI | |
Chou CH, Huang MJ, Chen CH, Shyu MK, Huang J, Hung JS, Huang CS and Huang MC: Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget. 6:6123–6135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, et al: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest. 118:3725–3737. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuo TC, Wu MH, Yang SH, Chen ST, Hsu TW, Jhuang JY, Liao YY, Tien YW and Huang MC: C1GALT1 high expression is associated with poor survival of patients with pancreatic ductal adenocarcinoma and promotes cell invasiveness through integrin αv. Oncogene. 40:1242–1254. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH and Huang MC: C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene. 39:2724–2740. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin MC, Chien PH, Wu HY, Chen ST, Juan HF, Lou PJ and Huang MC: C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene. 37:5780–5793. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu L, Peng F and Shen L: Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res. 362:302–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chou CH, Huang MJ, Liao YY, Chen CH and Huang MC: C1GALT1 seems to promote in vitro disease progression in ovarian cancer. Int J Gynecol Cancer. 27:863–871. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH and Huang MC: C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 73:5580–5590. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karsten U and Goletz S: What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry (Mosc). 80:801–807. 2015. View Article : Google Scholar : PubMed/NCBI | |
Numa F, Tsunaga N, Michioka T, Nawata S, Ogata H and Kato H: Tissue expression of Sialyl Tn antigen in gynecologic tumors. J Obstet Gynaecol (Tokyo 1995). 21:385–389. 1995. View Article : Google Scholar : PubMed/NCBI | |
Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y, Edler L, Hossfeld DK and Schumacher U: Lectin histochemistry of resected adenocarcinoma of the lung: Helix pomatia agglutinin binding is an independent prognostic factor. Am J Pathol. 160:1001–1008. 2002. View Article : Google Scholar : PubMed/NCBI | |
Konno A, Hoshino Y, Terashima S, Motoki R and Kawaguchi T: Carbohydrate expression profile of colorectal cancer cells is relevant to metastatic pattern and prognosis. Clin Exp Metastasis. 19:61–70. 2002. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, et al: IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 118:629–639. 2008.PubMed/NCBI | |
Narimatsu Y, Kubota T, Furukawa S, Shimojima M, Iwasaki H, Tozawa Y, Tachibana K and Narimatsu H: Co-translational function of Cosmc, core 1 synthase specific molecular chaperone, revealed by a cell-free translation system. FEBS Lett. 585:1276–1280. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, et al: Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc Natl Acad Sci USA. 103:16442–16447. 2006. View Article : Google Scholar : PubMed/NCBI | |
Piller V, Piller F and Fukuda M: Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem. 265:9264–9271. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al: Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68:1636–1646. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aryal RP, Ju T and Cummings RD: Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J Biol Chem. 287:15317–15329. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aryal RP, Ju T and Cummings RD: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem. 285:2456–2462. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ellis RJ: The molecular chaperone concept. Semin Cell Biol. 1:1–9. 1990.PubMed/NCBI | |
Ju T, Aryal RP, Stowell CJ and Cummings RD: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol. 182:531–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ju T and Cummings RD: Protein glycosylation: Chaperone mutation in Tn syndrome. Nature. 437:12522005. View Article : Google Scholar : PubMed/NCBI | |
Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J and Xia L: Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 204:1417–1429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guda K, Moinova H, He J, Jamison O, Ravi L, Natale L, Lutterbaugh J, Lawrence E, Lewis S, Willson JK, et al: Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad Sci USA. 106:12921–12925. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brockhausen I: Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta. 1473:67–95. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN and Hohng S: Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun. 11:60332020. View Article : Google Scholar : PubMed/NCBI | |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Xiao Z, Yu R, Wang Y, Xu R and Zhu X: miR-181d-5p-FOXP1 feedback loop modulates the progression of osteosarcoma. Biochem Biophys Res Commun. 503:1434–1441. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wei H, Wang J, Li L, Chen A and Li Z: MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic Acids. 19:654–667. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao LM, Zheng Y, Wang P, Zheng L, Zhang WL, Di Y, Chen LL, Yin XB, Tian Q, Shi SS and Xu SF: Tumor-suppressive effects of microRNA-181d-5p on non-small-cell lung cancer through the CDKN3-mediated Akt signaling pathway in vivo and in vitro. Am J Physiol Lung Cell Mol Physiol. 316:L918–L933. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Liu Y, Deng X, Shao J, Tian S, Chen S, Huang R, Lin Z, Chen C and Shen L: C1GALT1, negatively regulated by miR-181d-5p, promotes tumor progression via upregulating RAC1 in lung adenocarcinoma. Front Cell Dev Biol. 9:7079702021. View Article : Google Scholar : PubMed/NCBI | |
Feng F, Liu H, Chen A, Xia Q, Zhao Y, Jin X and Huang J: miR-148-3p and miR-152-3p synergistically regulate prostate cancer progression via repressing KLF4. J Cell Biochem. 120:17228–17239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L and Zhang S: Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2: MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res. 36:1002017. View Article : Google Scholar : PubMed/NCBI | |
Ma P, Li L, Liu F and Zhao Q: HNF1A-induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther. 13:7641–7652. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Chen C, Deng X, Liu Y, Duan Q, Peng Z, Luo Z and Shen L: A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci. 11:1662021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen LK, Kholodenko BN and von Kriegsheim A: Rac1 and RhoA: Networks, loops and bistability. Small GTPases. 9:316–321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H and Liu Z: Emerging roles of RAC1 in treating lung cancer patients. Clin Genet. 91:520–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
De P, Aske JC and Dey N: RAC1 Takes the lead in solid tumors. Cells. 8:3822019. View Article : Google Scholar : PubMed/NCBI | |
Kazanietz MG and Caloca MJ: The Rac GTPase in Cancer: From old concepts to new paradigms. Cancer Res. 77:5445–5451. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang D, Ding T, Liu F, Xu X, Tian Y, Xiao J and Shen H: LncRNA NR2F2-AS1 upregulates Rac1 to increase cancer stemness in clear cell renal cell carcinoma. Cancer Biother Radiopharm. 35:301–306. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Ren M, Li Y, Chen C, Su J, Su B, Xia H, Liu F, Jiang H, Ling H, et al: Knockdown of RhoGDI2 represses human gastric cancer cell proliferation, invasion and drug resistance via the Rac1/Pak1/LIMK1 pathway. Cancer Lett. 492:136–146. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Yu HI, Cho WC and Tarn WY: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene. 34:2790–2800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT and Huang MC: C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 5:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL, Huang MC and Lai IR: Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget. 7:11251–11262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, et al: Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71:7270–7279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, et al: Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget. 6:5650–5665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG and Van Schaeybroeck S; MErCuRIC consortium, : Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat Rev Clin Oncol. 14:562–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sierra JC, Asim M, Verriere TG, Piazuelo MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP, Peek RM Jr, et al: Epidermal growth factor receptor inhibition downregulates-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut. 67:1247–1260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kania A and Klein R: Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 17:240–256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xi HQ, Wu XS, Wei B and Chen L: Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaught D, Brantley-Sieders DM and Chen J: Eph receptors in breast cancer: Roles in tumor promotion and tumor suppression. Breast Cancer Res. 10:2172008. View Article : Google Scholar : PubMed/NCBI | |
Herath NI and Boyd AW: The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer. 126:2003–2011. 2010.PubMed/NCBI | |
Lisle JE, Mertens-Walker I, Rutkowski R, Herington AC and Stephenson SA: Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta. 1835:243–257. 2013.PubMed/NCBI | |
Pasquale EB: Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boyd AW, Bartlett PF and Lackmann M: Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov. 13:39–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan WJ, Ge J, Chen ZK, Wu SB, Shen H, Yang P, Hu B, Zhang GW and Chen ZH: Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci. 54:2410–2417. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakamura R, Kataoka H, Sato N, Kanamori M, Ihara M, Igarashi H, Ravshanov S, Wang YJ, Li ZY, Shimamura T, et al: EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci. 96:42–47. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yuan W, Chen Z, Chen Z, Wu S, Guo J, Ge J, Yang P and Huang J: Silencing of EphA2 inhibits invasion of human gastric cancer SGC-7901 cells in vitro and in vivo. Neoplasma. 59:105–113. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zender L, Villanueva A, Tovar V, Sia D, Chiang DY and Llovet JM: Cancer gene discovery in hepatocellular carcinoma. J Hepatol. 52:921–929. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marquardt JU, Galle PR and Teufel A: Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): An emerging field for advanced technologies. J Hepatol. 56:267–275. 2012. View Article : Google Scholar : PubMed/NCBI | |
Herr P, Korniychuk G, Yamamoto Y, Grubisic K and Oelgeschläger M: Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. Development. 135:1813–1822. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM and Thorgeirsson SS: Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 116:1582–1595. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, et al: Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 49:491–503. 2009. View Article : Google Scholar : PubMed/NCBI | |
D'Errico A, Fiorentino M, Ponzetto A, Daikuhara Y, Tsubouchi H, Brechot C, Scoazec JY and Grigioni WF: Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions: Its specific receptor c-met does. Hepatology. 24:60–64. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ma PC, Maulik G, Christensen J and Salgia R: c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22:309–325. 2003. View Article : Google Scholar : PubMed/NCBI | |
Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI | |
Casaletto JB and McClatchey AI: Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 12:387–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsuda Y, Ueda J and Ishiwata T: Fibroblast growth factor receptor 2: Expression, roles, and potential as a novel molecular target for colorectal cancer. Patholog Res Int. 2012:5747682012.PubMed/NCBI | |
Hatch NE, Hudson M, Seto ML, Cunningham ML and Bothwell M: Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 281:27292–27305. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schlessinger J: Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110:669–672. 2002. View Article : Google Scholar : PubMed/NCBI | |
Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL and Hsiao PW: Metastatic progression of prostate cancer is mediated by autonomous binding of Galectin-4-O-Glycan to cancer cells. Cancer Res. 76:5756–5767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marcucci F, Bellone M, Caserta CA and Corti A: Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer. 135:1265–1276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo W and Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 5:816–826. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hood JD and Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer. 2:91–100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fransvea E, Mazzocca A, Antonaci S and Giannelli G: Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 49:839–850. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N and Kalluri R: Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 63:8312–8317. 2003.PubMed/NCBI | |
Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, Wang XY, Devbhandari RP and Fan J: CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology. 140:1629–1641.e15. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Hatakeyama S, Yu SY, Bao X, Ohyama C, Khoo KH, Fukuda MN and Fukuda M: Core3 O-glycan synthase suppresses tumor formation and metastasis of prostate carcinoma PC3 and LNCaP cells through down-regulation of alpha2beta1 integrin complex. J Biol Chem. 284:17157–17169. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clément M, Rocher J, Loirand G and Le Pendu J: Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. J Cell Sci. 117:5059–5069. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liao WC, Chen CH, Liu CH, Huang MJ, Chen CW, Hung JS, Chou CH, Chen CH, Che MI, Chang HM, et al: Expression of GALNT2 in human extravillous trophoblasts and its suppressive role in trophoblast invasion. Placenta. 33:1005–1011. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang MC, Chen HY, Huang HC, Huang J, Liang JT, Shen TL, Lin NY, Ho CC, Cho IM and Hsu SM: C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene. 25:3267–3276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Katagiri T, Chung S, Kijima K and Nakamura Y: Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin. Neoplasia. 13:320–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Meng F, Wu S, Kreike B, Sethi S, Chen W, Miller FR and Wu G: Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res. 71:4846–4856. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang HH, Chen CH, Chou CH, Liao YF, Huang MJ, Chen YH, Wang WJ, Huang J, Hung JS, Ho WL, et al: β-1,4-Galactosyltransferase III enhances invasive phenotypes via β1-integrin and predicts poor prognosis in neuroblastoma. Clin Cancer Res. 19:1705–1716. 2013. View Article : Google Scholar : PubMed/NCBI | |
Seguin L, Desgrosellier JS, Weis SM and Cheresh DA: Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25:234–240. 2015. View Article : Google Scholar : PubMed/NCBI | |
Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marsico G, Russo L, Quondamatteo F and Pandit A: Glycosylation and integrin regulation in cancer. Trends Cancer. 4:537–552. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, Xiang L, Samanta D, Lee MH, Wu PH, et al: Hypoxia selectively enhances integrin αβ receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 15:723–734. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li XQ, Lu JT, Tan CC, Wang QS and Feng YM: RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization. Cancer Lett. 380:78–86. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pantano F, Croset M, Driouch K, Bednarz-Knoll N, Iuliani M, Ribelli G, Bonnelye E, Wikman H, Geraci S, Bonin F, et al: Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene. 40:1284–1299. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang JF, Wang Y, Zhang SW, Chen YY, Qiu Y, Duan SY, Li BP and Chen JQ: Expression and prognostic analysis of integrins in gastric cancer. J Oncol. 2020:88622282020. View Article : Google Scholar : PubMed/NCBI | |
Hakamada K: Cancer stroma-targeting therapy: A new tool for fighting pancreatic cancer? Ann Gastroenterol Surg. 3:120–121. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guan JL: Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol. 29:1085–1096. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A, Lim ST, Bernard-Trifilo JA, Ilic D, Stupack DG, et al: Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. 25:5969–5984. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Shyu MK, Wang SW, Chou CH, Huang MJ, Lin TC, Chen ST, Lin HH and Huang MC: MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin β1 pathway. Gynecol Oncol. 140:131–137. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guan JL: Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life. 62:268–276. 2010.PubMed/NCBI | |
Nath S and Mukherjee P: MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 20:332–342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D and Smith M: MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia. 7:209–221. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kufe DW: Mucins in cancer: Function, prognosis and therapy. Nat Rev Cancer. 9:874–885. 2009. View Article : Google Scholar : PubMed/NCBI | |
Apostolopoulos V, Stojanovska L and Gargosky SE: MUC1 (CD227): A multi-tasked molecule. Cell Mol Life Sci. 72:4475–4500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Wang SW, Chen CW, Huang MR, Hung JS, Huang HC, Lin HH, Chen RJ, Shyu MK and Huang MC: MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol Oncol. 128:560–567. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Hsiao SM, Chang TC, Wu WY and Lin HH: Clinical and urodynamic effects of baclofen in women with functional bladder outlet obstruction: Preliminary report. J Obstet Gynaecol Res. 42:560–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
Razawi H, Kinlough CL, Staubach S, Poland PA, Rbaibi Y, Weisz OA, Hughey RP and Hanisch FG: Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology. 23:935–945. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kufe DW: MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu HL, Zhao X, Zhang KM, Tang W and Kokudo N: Inhibition of KL-6/MUC1 glycosylation limits aggressive progression of pancreatic cancer. World J Gastroenterol. 20:12171–12181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liao X, Ye Q and Huang L: Clinic implication of MUC1 O-glycosylation and C1GALT1 in esophagus squamous cell carcinoma. Sci China Life Sci. 61:1389–1395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gendler SJ, Spicer AP, Lalani EN, Duhig T, Peat N, Burchell J, Pemberton L, Boshell M and Taylor-Papadimitriou J: Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis. 144 (Suppl 1):S42–S47. 1991. View Article : Google Scholar : PubMed/NCBI | |
Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, et al: Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 44:1444–1454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Ujiie H, Hatanaka KC, Nange A, Okumura A, Tsubame K, Naruchi K, Sato M, Kaga K, Matsuno Y, et al: A novel Tn antigen epitope-recognizing antibody for MUC1 predicts clinical outcome in patients with primary lung adenocarcinoma. Oncol Lett. 21:2022021. View Article : Google Scholar : PubMed/NCBI | |
Allen A, Hutton DA and Pearson JP: The MUC2 gene product: A human intestinal mucin. Int J Biochem Cell Biol. 30:797–801. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tytgat KM, Büller HA, Opdam FJ, Kim YS, Einerhand AW and Dekker J: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology. 107:1352–1363. 1994. View Article : Google Scholar : PubMed/NCBI | |
van Klinken BJ, Einerhand AW, Duits LA, Makkink MK, Tytgat KM, Renes IB, Verburg M, Büller HA and Dekker J: Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol. 276:G115–G124. 1999.PubMed/NCBI | |
Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L and Hansson GC: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 105:15064–15069. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, Cui Y, Li Y, McDaniel JM, McGee S, et al: Defective intestinal Mucin-type O-Glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 151:152–164.e11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Bergstrom K, Fu J, Xie B, Chen W and Xia L: Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am J Physiol Gastrointest Liver Physiol. 311:G74–G83. 2016. View Article : Google Scholar : PubMed/NCBI | |
Johansson MEV, Sjövall H and Hansson GC: The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 10:352–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, et al: Disruption of C1galt1 Gene promotes development and metastasis of pancreatic adenocarcinomas in mice. Gastroenterology. 155:1608–1624. 2018. View Article : Google Scholar : PubMed/NCBI | |
da Fonseca LM, da Silva VA, Freire-de-Lima L, Previato JO, Mendonça-Previato L and Capella MAM: Glycosylation in Cancer: Interplay between Multidrug resistance and Epithelial-to-Mesenchymal Transition? Front Oncol. 6:1582016. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Miao X, Ma Q, Zheng W, Zhou H and Jia L: Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life. 65:409–422. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Qin H, Li T, Cheng K, Dong J, Tian M, Chai N, Guo H, Li J, You X, et al: Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget. 7:25315–25327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Huang M, Chen W, Zhu W, Meng H, Guo L, Wei T and Zhang J: N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J. 282:4295–4306. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhuo E, He J, Wei T, Zhu W, Meng H, Li Y, Guo L and Zhang J: Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo. Biochem Biophys Res Commun. 424:554–562. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JJ and Lee M: Increasing the α 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver. 7:629–641. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Dong XX, Wu JB, Qiu L, Duan QW and Luo ZG: Radiosensitisation of human glioma cells by inhibition of β1,6-GlcNAc branched N-glycans. Tumour Biol. 37:4909–4918. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L and Luo Z: Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer. 9:2666–2677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, et al: Radiation-enhanced cell migration/invasion process: A review. Crit Rev Oncol Hematol. 92:133–142. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paquette B, Therriault H, Desmarais G, Wagner R, Royer R and Bujold R: Radiation-enhancement of MDA-MB-231 breast cancer cell invasion prevented by a cyclooxygenase-2 inhibitor. Br J Cancer. 105:534–541. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qian LW, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M and Tanaka M: Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res. 8:1223–1227. 2002.PubMed/NCBI | |
Wu J, Li Y, Dang YZ, Gao HX, Jiang JL and Chen ZN: HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: A potential role for integrin β1 signaling. Mol Cancer Ther. 14:553–563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aftab BT, Dobromilskaya I, Liu JO and Rudin CM: Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71:6764–6772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D, et al: Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 17:388–399. 2010. View Article : Google Scholar : PubMed/NCBI |