1
|
van de Donk N, Pawlyn C and Yong KL:
Multiple myeloma. Lancet. 397:410–427. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ghandili S, Weisel KC, Bokemeyer C and
Leypoldt LB: Current treatment approaches to newly diagnosed
multiple myeloma. Oncol Res Treat. 44:690–699. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kazandjian D: Multiple myeloma
epidemiology and survival: A unique malignancy. Semin Oncol.
43:676–681. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Costa LJ and Usmani SZ: Defining and
managing high-risk multiple myeloma: Current concepts. J Natl Compr
Canc Netw. 18:1730–1737. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li T, Chen J and Zeng Z:
Pathophysiological role of calcium channels and transporters in the
multiple myeloma. Cell Commun Signal. 19:992021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stewart TA, Yapa KT and Monteith GR:
Altered calcium signaling in cancer cells. Biochim Biophys Acta.
1848:2502–2511. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Deliot N and Constantin B: Plasma membrane
calcium channels in cancer: Alterations and consequences for cell
proliferation and migration. Biochim Biophys Acta. 1848:2512–2522.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nilius B, Owsianik G, Voets T and Peters
JA: Transient receptor potential cation channels in disease.
Physiol Rev. 87:165–217. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ferrandiz-Huertas C, Mathivanan S, Wolf
CJ, Devesa I and Ferrer-Montiel A: Trafficking of ThermoTRP
channels. Membranes (Basel). 4:525–564. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim M, Sisco NJ, Hilton JK, Montano CM,
Castro MA, Cherry BR, Levitus M and Horn WD: Evidence that the
TRPV1 S1-S4 membrane domain contributes to thermosensing. Nat
Commun. 11:41692020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gorbunov AS, Maslov LN, Jaggi AS, Singh N,
Petrocellis LD, Boshchenko AA, Roohbakhsh A, Bezuglov VV and
Oeltgen PR: Physiological and pathological role of TRPV1, TRPV2 and
TRPV4 channels in heart. Curr Cardiol Rev. 15:244–251. 2019.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Vay L, Gu C and McNaughton PA: The
thermo-TRP ion channel family: Properties and therapeutic
implications. Br J Pharmacol. 165:787–801. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ambudkar IS, de Souza LB and Ong HL:
TRPC1, orai1, and STIM1 in SOCE: Friends in tight spaces. Cell
Calcium. 63:33–39. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Santoni G and Farfariello V: TRP channels
and cancer: new targets for diagnosis and chemotherapy. Endocr
Metab Immune Disord Drug Targets. 11:54–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Canales J, Morales D, Blanco C, Rivas J,
Díaz N, Angelopoulos I and Cerda O: A TR(i)P to cell migration: New
roles of TRP channels in mechanotransduction and cancer. Front
Physiol. 10:7572019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Prevarskaya N, Zhang L and Barritt G: TRP
channels in cancer. Biochim Biophys Acta. 1772:937–946. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Santoni G, Maggi F, Morelli MB, Santoni M
and Marinelli O: Transient receptor potential cation channels in
cancer therapy. Med Sci (Basel). 7:1082019.PubMed/NCBI
|
18
|
Maggi F, Morelli MB, Nabissi M, Marinelli
O, Zeppa L, Aguzzi C, Santoni G and Amantini C: Transient receptor
potential (TRP) channels in haematological malignancies: An update.
Biomolecules. 11:7652021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Heider M, Nickel K, Hogner M and
Bassermann F: Multiple myeloma: Molecular pathogenesis and disease
evolution. Oncol Res Treat. 44:672–681. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hodeify R, Yu F, Courjaret R, Nader N, Dib
M, Sun L, Adap E, Hubrack S and Machaca K: Regulation and Role of
Store-Operated Ca(2+) Entry in Cellular Proliferation. In: Calcium
Entry Channels in Non-Excitable Cells. Kozak JA and Putney JW Jr:
CRC Press/Taylor & Francis; Boca Raton, FL: pp. 215–240. 2018,
PubMed/NCBI
|
21
|
Karki T and Tojkander S: TRPV protein
family-from mechanosensing to cancer invasion. Biomolecules.
11:10192021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kojima I and Nagasawa M: Trpv2. Handb Exp
Pharmacol. 222:247–272. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liberati S, Morelli MB, Amantini C,
Santoni M, Nabissi M, Cardinali C and Santoni G: Advances in
transient receptor potential vanilloid-2 channel expression and
function in tumor growth and progression. Curr Protein Pept Sci.
15:732–737. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Siveen KS, Nizamuddin PB, Uddin S,
Al-Thani M, Frenneaux MP, Janahi IA, Steinhoff M and Azizi F:
TRPV2: A cancer biomarker and potential therapeutic target. Dis
Markers. 2020:88923122020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fabris S, Todoerti K, Mosca L, Agnelli L,
Intini D, Lionetti M, Guerneri S, Lambertenghi-Deliliers G, Bertoni
F and Neri A: Molecular and transcriptional characterization of the
novel 17p11.2-p12 amplicon in multiple myeloma. Genes Chromosomes
Cancer. 46:1109–1118. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liberati S, Morelli MB, Amantini C,
Farfariello V, Santoni M, Conti A, Nabissi M, Cascinu S and Santoni
G: Loss of TRPV2 homeostatic control of cell proliferation drives
tumor progression. Cells. 3:112–128. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bai H, Zhu H, Yan Q, Shen X, Lu X, Wang J,
Li J and Chen L: TRPV2-induced Ca(2+)-calcineurin-NFAT signaling
regulates differentiation of osteoclast in multiple myeloma. Cell
Commun Signal. 16:682018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Morelli MB, Offidani M, Alesiani F,
Discepoli G, Liberati S, Olivieri A, Santoni M, Santoni G, Leoni P
and Nabissi M: The effects of cannabidiol and its synergism with
bortezomib in multiple myeloma cell lines. A role for transient
receptor potential vanilloid type-2. Int J Cancer. 134:2534–2546.
2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nabissi M, Offidani M, Morelli MB,
Pettinari M, Caraffa P, Gentili S, Corvatta L, Santoni G, Alesiani
F and Leoni P: TRPV2 expression and its role in proliferation of
human multiple myeloma cell lines. Blood. 118:50032011. View Article : Google Scholar
|
30
|
Boedtkjer E and Pedersen SF: The acidic
tumor microenvironment as a driver of cancer. Annu Rev Physiol.
82:103–126. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Caterina MJ, Schumacher MA, Tominaga M,
Rosen TA, Levine JD and Julius D: The capsaicin receptor: A
heat-activated ion channel in the pain pathway. Nature.
389:816–824. 1997. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Swietach P, Vaughan-Jones RD, Harris AL
and Hulikova A: The chemistry, physiology and pathology of pH in
cancer. Philos Trans R Soc Lond B Biol Sci. 369:201300992014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Gastelum G, Veena M, Lyons K, Lamb C,
Jacobs N, Yamada A, Baibussinov A, Sarafyan M, Shamis R, Kraut J
and Frost P: Can targeting hypoxia-mediated acidification of the
bone marrow microenvironment kill myeloma tumor cells? Front Oncol.
11:7038782021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Amachi R, Hiasa M, Teramachi J, Harada T,
Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, et al: A
vicious cycle between acid sensing and survival signaling in
myeloma cells: acid-induced epigenetic alteration. Oncotarget.
7:70447–70461. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ramakrishnan V and Kumar S: PI3K/AKT/mTOR
pathway in multiple myeloma: From basic biology to clinical
promise. Leuk Lymphoma. 59:2524–2534. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ghobrial IM: Myeloma as a model for the
process of metastasis: Implications for therapy. Blood. 120:20–30.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
White C: The regulation of tumor cell
invasion and metastasis by endoplasmic reticulum-to-mitochondrial
Ca(2+) transfer. Front Oncol. 7:1712017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Samart P, Luanpitpong S, Rojanasakul Y and
Issaragrisil S: O-GlcNAcylation homeostasis controlled by calcium
influx channels regulates multiple myeloma dissemination. J Exp
Clin Cancer Res. 40:1002021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pina R, Ugarte G, Campos M,
Íñigo-Portugués A, Olivares E, Orio P, Belmonte C, Bacigalupo J and
Madrid R: Role of TRPM8 channels in altered cold sensitivity of
corneal primary sensory neurons induced by axonal damage. J
Neurosci. 39:8177–8192. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yee NS: Roles of TRPM8 ion channels in
cancer: Proliferation, survival, and invasion. Cancers (Basel).
7:2134–2146. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bidaux G, Flourakis M, Thebault S, Zholos
A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, et
al: Prostate cell differentiation status determines transient
receptor potential melastatin member 8 channel subcellular
localization and function. J Clin Invest. 117:1647–1657. 2007.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Hirai A, Aung NY, Ohe R, Nishida A, Kato
T, Meng H, Ishizawa K, Fujii J and Yamakawa M: Expression of TRPM8
in human reactive lymphoid tissues and mature B-cell neoplasms.
Oncol Lett. 16:5930–5938. 2018.PubMed/NCBI
|
43
|
Terpos E, Morgan G, Dimopoulos MA, Drake
MT, Lentzsch S, Raje N, Sezer O, García-Sanz R, Shimizu K, Turesson
I, et al: International myeloma working group recommendations for
the treatment of multiple myeloma-related bone disease. J Clin
Oncol. 31:2347–2357. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Terpos E, Ntanasis-Stathopoulos I,
Gavriatopoulou M and Dimopoulos MA: Pathogenesis of bone disease in
multiple myeloma: From bench to bedside. Blood Cancer J. 8:72018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Beider K, Rosenberg E, Dimenshtein-Voevoda
V, Sirovsky Y, Vladimirsky J, Magen H, Ostrovsky O, Shimoni A,
Bromberg Z, Weiss L, et al: Blocking of transient receptor
potential vanilloid 1 (TRPV1) promotes terminal mitophagy in
multiple myeloma, disturbing calcium homeostasis and targeting
ubiquitin pathway and bortezomib-induced unfolded protein response.
J Hematol Oncol. 13:1582020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Masuyama R, Vriens J, Voets T, Karashima
Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K,
Bosch AV, et al: TRPV4-mediated calcium influx regulates terminal
differentiation of osteoclasts. Cell Metab. 8:257–265. 2008.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nishimura H, Kawasaki M, Tsukamoto M,
Menuki K, Suzuki H, Matsuura T, Baba K, Motojima Y, Fujitani T,
Ohnishi H, et al: Transient receptor potential vanilloid 1 and 4
double knockout leads to increased bone mass in mice. Bone Rep.
12:1002682020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Raje NS, Bhatta S and Terpos E: Role of
the RANK/RANKL pathway in multiple myeloma. Clin Cancer Res.
25:12–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pinto V, Bergantim R, Caires HR, Seca H,
Guimarães JE and Vasconcelos MH: Multiple myeloma: Available
therapies and causes of drug resistance. Cancers (Basel).
12:4072020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Painuly U, Ramakrishnan V, Kimlinger T,
Wellik L, Haug J, Gonsalves W, Bi L, Huang Z, Rajkumar SV and Kumar
S: Aurora kinase and FGFR3 inhibition results in significant
apoptosis in molecular subgroups of multiple myeloma. Oncotarget.
9:34582–34594. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ramakrishnan V, Gomez M, Prasad V,
Kimlinger T, Painuly U, Mukhopadhyay B, Haug J, Bi L, Rajkumar SV
and Kumar S: Smac mimetic LCL161 overcomes protective ER stress
induced by obatoclax, synergistically causing cell death in
multiple myeloma. Oncotarget. 7:56253–56265. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Robak P, Drozdz I, Szemraj J and Robak T:
Drug resistance in multiple myeloma. Cancer Treat Rev. 70:199–208.
2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kerkhofs M, Bittremieux M, Morciano G,
Giorgi C, Pinton P, Parys JB and Bultynck G: Emerging molecular
mechanisms in chemotherapy: Ca(2+) signaling at the
mitochondria-associated endoplasmic reticulum membranes. Cell Death
Dis. 9:3342018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liu M, Wang Y, Miettinen JJ, Kumari R,
Majumder MM, Tierney C, Bazou D, Parsons A, Suvela M, Lievonen J,
et al: S100 calcium binding protein family members associate with
poor patient outcome and response to proteasome inhibition in
multiple myeloma. Front Cell Dev Biol. 9:7230162021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ito S: Proteasome inhibitors for the
treatment of multiple myeloma. Cancers (Basel). 12:2652020.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Robak P, Szemraj J, Mikulski D, Drozdz I,
Juszczak K, Jarych D, Misiewicz M, Kościelny K, Fendler W and Robak
T: Prognostic value of resistance proteins in plasma cells from
multiple myeloma patients treated with bortezomib-based regimens. J
Clin Med. 10:50282021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zaal EA, Wu W, Jansen G, Zweegman S, Cloos
J and Berkers CR: Bortezomib resistance in multiple myeloma is
associated with increased serine synthesis. Cancer Metab. 5:72017.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Bromberg Z, Goloubinoff P, Saidi Y and
Weiss YG: The membrane-associated transient receptor potential
vanilloid channel is the central heat shock receptor controlling
the cellular heat shock response in epithelial cells. PLoS One.
8:e571492013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Emmons MF, Anreddy N, Cuevas J,
Steinberger K, Yang S, McLaughlin M, Silva A and Hazlehurst LA:
MTI-101 treatment inducing activation of Stim1 and TRPC1 expression
is a determinant of response in multiple myeloma. Sci Rep.
7:26852017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Xu SZ and Beech DJ: TrpC1 is a
membrane-spanning subunit of store-operated Ca(2+) channels in
native vascular smooth muscle cells. Circ Res. 88:84–87. 2001.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Elzamzamy OM, Johnson BE, Chen WC, Hu G,
Penner R and Hazlehurst LA: Transient receptor potential C 1/4/5 is
a determinant of MTI-101 induced calcium influx and cell death in
multiple myeloma. Cells. 10:14902021. View Article : Google Scholar : PubMed/NCBI
|
62
|
Carozzi VA, Renn CL, Bardini M, Fazio G,
Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP,
et al: Bortezomib-induced painful peripheral neuropathy: An
electrophysiological, behavioral, morphological and mechanistic
study in the mouse. PLoS One. 8:e729952013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Argyriou AA, Iconomou G and Kalofonos HP:
Bortezomib-induced peripheral neuropathy in multiple myeloma: A
comprehensive review of the literature. Blood. 112:1593–1599. 2008.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Hu F, Song X and Long D: Transient
receptor potential ankyrin 1 and calcium: Interactions and
association with disease (Review). Exp Ther Med. 22:14622021.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Nilius B, Appendino G and Owsianik G: The
transient receptor potential channel TRPA1: From gene to
pathophysiology. Pflugers Arch. 464:425–458. 2012. View Article : Google Scholar : PubMed/NCBI
|
66
|
Wang Q, Wang J, Gao D and Li J: Inhibition
of PAR2 and TRPA1 signals alleviates neuropathic pain evoked by
chemotherapeutic bortezomib. J Biol Regul Homeost Agents.
31:977–983. 2017.PubMed/NCBI
|
67
|
Liu D, Sun M, Xu D, Ma X, Gao D and Yu H:
Inhibition of TRPA1 and IL-6 signal alleviates neuropathic pain
following chemotherapeutic bortezomib. Physiol Res. 68:845–855.
2019. View Article : Google Scholar : PubMed/NCBI
|