Cell‑based immunotherapy of glioblastoma multiforme (Review)
- Authors:
- Igor Bryukhovetskiy
-
Affiliations: Medical Center, School of Medicine, Far Eastern Federal University, Vladivostok 690091, Russia - Published online on: February 23, 2022 https://doi.org/10.3892/ol.2022.13253
- Article Number: 133
-
Copyright: © Bryukhovetskiy . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lukas RV, Wainwright DA, Ladomersky E, Sachdev S, Sonabend AM and Stupp R: Newly diagnosed glioblastoma: A review on clinical management. Oncology (Williston Park). 33:91–100. 2019.PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gimple RC, Bhargava S, Dixit D and Rich JN: Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 33:591–609. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI | |
McGranahan T, Therkelsen KE, Ahmad S and Nagpal S: Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol. 20:242019. View Article : Google Scholar : PubMed/NCBI | |
Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant CA, Kemeny HR, et al: Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 24:1459–1468. 2018. View Article : Google Scholar : PubMed/NCBI | |
Waziri A: Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am. 21:31–42. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, et al: Corticosteroids compromise survival in glioblastoma. Brain. 139((Pt 5)): 1458–1471. 2016. View Article : Google Scholar : PubMed/NCBI | |
Omuro A and DeAngelis LM: Glioblastoma and other malignant gliomas: A clinical review. JAMA. 310:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weller M, Le Rhun E, Preusser M, Tonn JC and Roth P: How we treat glioblastoma. ESMO Open. 4 (Suppl 2):e0005202019. View Article : Google Scholar : PubMed/NCBI | |
Nam JY and de Groot JF: Treatment of glioblastoma. J Oncol Pract. 13:629–638. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scartoni D, Amelio D, Palumbo P, Giacomelli I and Amichetti M: Proton therapy re-irradiation preserves health-related quality of life in large recurrent glioblastoma. J Cancer Res Clin Oncol. 146:1615–1622. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miyatake SI, Wanibuchi M, Hu N and Ono K: Boron neutron capture therapy for malignant brain tumors. J Neurooncol. 149:1–11. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lesueur P, Lequesne J, Grellard JM, Dugué A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et al: Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 19:1982019. View Article : Google Scholar : PubMed/NCBI | |
Bostian AC, Maddukuri L, Reed MR, Savenka T, Hartman JH, Davis L, Pouncey DL, Miller GP and Eoff RL: Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells. Chem Res Toxicol. 29:101–108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M and Khotimchenko Y: Bioactive compounds with antiglioma activity from marine species. Biomedicines. 9:8862021. View Article : Google Scholar : PubMed/NCBI | |
Anthony P, McArdle S and McHugh M: Tumor treating fields: Adjuvant treatment for high-grade gliomas. Semin Oncol Nurs. 34:454–464. 2018. View Article : Google Scholar : PubMed/NCBI | |
Di Nunno V, Franceschi E, Tosoni A, Di Battista M, Gatto L, Lamperini C, Minichillo S, Mura A, Bartolini S and Brandes AA: Treatment of recurrent glioblastoma: State-of-the-art and future perspectives. Expert Rev Anticancer Ther. 20:785–795. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kazmi F, Soon YY, Leong YH, Koh WY and Vellayappan B: Re-irradiation for recurrent glioblastoma (GBM): A systematic review and meta-analysis. J Neurooncol. 142:79–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gigliotti MJ, Hasan S, Karlovits SM, Ranjan T and Wegner RE: Re-Irradiation with stereotactic radiosurgery/radiotherapy for recurrent high-grade gliomas: Improved survival in the modern Era. Stereotact Funct Neurosurg. 96:289–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weller M and Le Rhun E: How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 87:1020292020. View Article : Google Scholar : PubMed/NCBI | |
Schmidt F, Fischer J, Herrlinger U, Dietz K, Dichgans J and Weller M: PCV chemotherapy for recurrent glioblastoma. Neurology. 66:587–589. 2006. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Soomro SH, Ting LR, Qing YY and Ren M: Molecular biology of glioblastoma: Classification and mutational locations. J Pak Med Assoc. 67:1410–1414. 2017.PubMed/NCBI | |
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jakovlevs A, Vanags A, Gardovskis J and Strumfa I: Molecular classification of diffuse gliomas. Pol J Pathol. 70:246–258. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bhawe KM and Aghi MK: Microarray analysis in glioblastomas. Methods Mol Biol. 1375:195–206. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qazi MA, Vora P, Venugopal C, Sidhu SS, Moffat J, Swanton C and Singh SK: Intratumoral heterogeneity: Pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 28:1448–1456. 2017. View Article : Google Scholar : PubMed/NCBI | |
Waitkus MS, Diplas BH and Yan H: Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 34:186–195. 2018. View Article : Google Scholar : PubMed/NCBI | |
Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, et al: The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun. 9:20872018. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI | |
Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI | |
Heng WS, Gosens R and Kruyt FAE: Lung cancer stem cells: Origin, features, maintenance mechanisms and therapeutic targeting. Biochem Pharmacol. 160:121–133. 2019. View Article : Google Scholar : PubMed/NCBI | |
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P and Kundu GC: Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ottevanger PB: Ovarian cancer stem cells more questions than answers. Semin Cancer Biol. 44:67–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munro MJ, Wickremesekera SK, Peng L, Tan ST and Itinteang T: Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beier D, Schulz JB and Beier CP: Chemoresistance of glioblastoma cancer stem cells-much more complex than expected. Mol Cancer. 10:1282011. View Article : Google Scholar : PubMed/NCBI | |
Altmann C, Keller S and Schmidt MHH: The Role of SVZ stem cells in glioblastoma. Cancers (Basel). 11:4482019. View Article : Google Scholar : PubMed/NCBI | |
Álvarez-Satta M, Moreno-Cugnon L and Matheu A: Primary cilium and brain aging: Role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev. 52:53–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Álvarez-Satta M and Matheu A: Primary cilium and glioblastoma. Ther Adv Med Oncol. 10:17588359188011692018. View Article : Google Scholar : PubMed/NCBI | |
Qu K and Ortoleva P: Understanding stem cell differentiation through self-organization theory. J Theor Biol. 250:606–620. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beccari L, Moris N, Girgin M, Turner DA, Baillie-Johnson P, Cossy AC, Lutolf MP, Duboule D and Arias AM: Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature. 562:272–276. 2018. View Article : Google Scholar : PubMed/NCBI | |
Persano L, Rampazzo E, Basso G and Viola G: Glioblastoma cancer stem cells: Role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 85:612–622. 2013. View Article : Google Scholar : PubMed/NCBI | |
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ and Oshimori N: Tumor-initiating cells establish an IL-33-TGF-beta niche signaling loop to promote cancer progression. Science. 369:eaay18132020. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta in Cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shevchenko V, Arnotskaya N, Pak O, Sharma A, Sharma HS, Khotimchenko Y, Bryukhovetskiy A and Bryukhovetskiy I: Molecular determinants of the interaction between glioblastoma CD133+ cancer stem cells and the extracellular matrix. Int Rev Neurobiol. 151:155–169. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy I and Shevchenko V: Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fecci PE and Sampson JH: The current state of immunotherapy for gliomas: An eye toward the future. J Neurosurg. 131:657–666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Choi BD, Maus MV, June CH and Sampson JH: Immunotherapy for glioblastoma: Adoptive T-cell Strategies. Clin Cancer Res. 25:2042–2048. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA, Chao CC, Gutiérrez-Vázquez C, Kenison J, Tjon EC, Barroso A, et al: Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci. 22:729–740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dehhaghi M, Kazemi Shariat Panahi H, Heng B and Guillemin GJ: The gut microbiota, kynurenine pathway, and immune system interaction in the development of brain cancer. Front Cell Dev Biol. 8:5628122020. View Article : Google Scholar : PubMed/NCBI | |
Authier A, Farrand KJ, Broadley KW, Ancelet LR, Hunn MK, Stone S, McConnell MJ and Hermans IF: Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells. Int J Cancer. 136:2566–2578. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yovino S, Kleinberg L, Grossman SA, Narayanan M and Ford E: The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31:140–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S and Piantadosi S; NABTT CNS Consortium, : Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res. 17:5473–5480. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim WJ, Dho YS, Ock CY, Kim JW, Choi SH, Lee ST, Kim IH, Kim TM and Park CK: Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma. J Neurooncol. 143:321–328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, et al: Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13:324–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Byun HK, Kim N, Yoon HI, Kang SG, Kim SH, Cho J, Baek JG, Chang JH and Suh CO: Clinical predictors of radiation-induced lymphopenia in patients receiving chemoradiation for glioblastoma: Clinical usefulness of intensity-modulated radiotherapy in the immuno-oncology era. Radiat Oncol. 14:512019. View Article : Google Scholar : PubMed/NCBI | |
Gwin WR III, Disis ML and Ruiz-Garcia E: Immuno-oncology in the era of personalized medicine. Adv Exp Med Biol. 1168:117–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alkhalili K, Zenonos G and Fernandez-Miranda JC: Do corticosteroids compromise survival in glioblastoma? Neurosurgery. 79:N15–N16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klement RJ and Champ CE: Corticosteroids compromise survival in glioblastoma in part through their elevation of blood glucose levels. Brain. 140:e162017.PubMed/NCBI | |
Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Medawar PB: Immunity to homologous grafted skin; The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 29:58–69. 1948.PubMed/NCBI | |
Zhou Q, Wang Y and Ma W: The progress of immunotherapy for glioblastoma. Hum Vaccin Immunother. 11:2654–2658. 2015. View Article : Google Scholar : PubMed/NCBI | |
da Fonseca AC, Amaral R, Garcia C, Geraldo LH, Matias D and Lima FR: Microglia in Cancer: For good or for bad? Adv Exp Med Biol. 949:245–261. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A and Khotimchenko Y: Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 12:1721–1728. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herz J, Louveau A, Da Mesquita S and Kipnis J: Morphological and functional analysis of CNS-associated lymphatics. Methods Mol Biol. 1846:141–151. 2018. View Article : Google Scholar : PubMed/NCBI | |
Louveau A and Nau JY: Nervous and lymphatic system communicate with each other. ‘Zyka virus’ unravels its mystery. Rev Med Suisse. 11:1462–1463. 2015.(In French). PubMed/NCBI | |
Lim M, Xia Y, Bettegowda C and Weller M: Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 15:422–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sarah C: Immunotherapy: CAR T cells in glioblastoma. Nat Rev Drug Discov. 16:6022017. View Article : Google Scholar | |
Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D, He X and Wu Y: Chimeric antigen receptor T-cell therapy in glioblastoma: Current and future. Front Immunol. 11:5942712020. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et al: HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F and Landriscina M: Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol. 35:25–37. 2020.PubMed/NCBI | |
Iglesia RP, Fernandes CFL, Coelho BP, Prado MB, Melo Escobar MI, Almeida GHDR and Lopes MH: Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci. 20:57942019. View Article : Google Scholar : PubMed/NCBI | |
Ammendola M, Currò G, Memeo R, Curto LS, Luposella M, Zuccalà V, Pessaux P, Navarra G, Gadaleta CD and Ranieri G: Targeting stem cells with hyperthermia: Translational relevance in cancer patients. Oncol. 98:755–762. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zanetti M: A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oji Y, Hashimoto N, Tsuboi A, Murakami Y, Iwai M, Kagawa N, Chiba Y, Izumoto S, Elisseeva O, Ichinohasama R, et al: Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer. 139:1391–1401. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kijima N, Hosen N, Kagawa N, Hashimoto N, Kinoshita M, Oji Y, Sugiyama H and Yoshimine T: Wilms' tumor 1 is involved in tumorigenicity of glioblastoma by regulating cell proliferation and apoptosis. Anticancer Res. 34:61–67. 2014.PubMed/NCBI | |
Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y and Quillien V: Expression of nine tumour antigens in a series of human glioblastoma multiforme:: Interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol. 81:139–148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL and Ying H: Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother. 26:301–312. 2003. View Article : Google Scholar : PubMed/NCBI | |
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I, Minic Z, Pallini R, et al: Targeting ephrin receptor tyrosine kinase A2 with a selective aptamer for glioblastoma stem cells. Mol Ther Nucleic Acids. 20:176–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A, Gorelik M, Subapanditha MK, Savage N, Yang J, et al: Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma. Cancer Res. 78:5023–5037. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L and Figarella-Branger D: A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 20:211–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A and Figarella-Branger D: Glycolipids recognized by A2B5 antibody promote proliferation, migration, and clonogenicity in glioblastoma cells. Cancers (Basel). 11:12672019. View Article : Google Scholar : PubMed/NCBI | |
De la Rocha AM, Sampron N, Alonso MM and Matheu A: Role of SOX family of transcription factors in central nervous system tumors. Am J Cancer Res. 4:312–324. 2014.PubMed/NCBI | |
Weathers SP, Penas-Prado M, Pei BL, Ling X, Kassab C, Banerjee P, Bdiwi M, Shaim H, Alsuliman A, Shanley M, et al: Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: Results from a phase I/II trial. Clin Cancer Res. 26:3565–3577. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Haan P, Van Diemen FR and Toscano MG: Viral gene delivery vectors: The next generation medicines for immune-related diseases. Hum Vaccin Immunother. 17:14–21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang JL, Scheitler KM, Wenger NM and Elder JB: Viral therapies for glioblastoma and high-grade gliomas in adults: A systematic review. Neurosurg Focus. 50:E22021. View Article : Google Scholar : PubMed/NCBI | |
Desjardins A, Gromeier M, Herndon JE II, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, et al: Recurrent Glioblastoma treated with Recombinant Poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell CR, et al: Outer Radial Glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu HS, Qin XL, Zong HL, He XG and Cao L: Cancer stem cell markers in glioblastoma-an update. Eur Rev Med Pharmacol Sci. 21:3207–3211. 2017.PubMed/NCBI | |
Ludwig K and Kornblum HI: Molecular markers in glioma. J Neurooncol. 134:505–512. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pointer KB, Clark PA, Zorniak M, Alrfaei BM and Kuo JS: Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochem Int. 71:1–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ahmed SI, Javed G, Laghari AA, Bareeqa SB, Farrukh S, Zahid S, Samar SS and Aziz K: CD133 expression in glioblastoma multiforme: A literature review. Cureus. 10:e34392018.PubMed/NCBI | |
Beier CP and Beier D: CD133 negative cancer stem cells in glioblastoma. Front Biosci (Elite Ed). 3:701–710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR and Park DM: Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro Oncol. 19:887–896. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy A, Shevchenko V, Kovalev S, Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the novel paradigm of proteome-based cell therapy of tumors: Through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 23 (Suppl 1):S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy I, Shevchenko V, Arnotskaya N, Kushnir T, Pak O, Victor Z, Zaitsev S, Khotimchenko Y, Bryukhovetskiy A, Sharma A and Sharma HS: Transforming growth factor-β mimics the key proteome properties of CD133-differentiated and CD133+ cancer stem cells in glioblastoma. Int Rev Neurobiol. 151:219–242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holladay FP, Heitz-Turner T, Bayer WL and Wood GW: Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J Neurooncol. 27:179–189. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wood GW, Holladay FP, Turner T, Wang YY and Chiga M: A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol. 48:113–120. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mitchell DA, Sayour EJ, Reap E, Schmittling R, DeLeon G, Norberg P, Desjardins A, Friedman AH, Friedman HS, Archer G and Sampson JH: Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res. 3:320–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, et al: Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Babar Khan M, Chakraborty S and Boockvar JA: Use of chimeric antigen receptor T cells as a potential therapeutic for glioblastoma. Neurosurgery. 80:N33–N34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Land CA, Musich PR, Haydar D, Krenciute G and Xie Q: Chimeric antigen receptor T-cell therapy in glioblastoma: Charging the T cells to fight. J Transl Med. 18:4282020. View Article : Google Scholar : PubMed/NCBI | |
Shen SH, Woroniecka K, Barbour AB, Fecci PE, Sanchez-Perez L and Sampson JH: CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther. 20:579–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salinas RD, Durgin JS and O'Rourke DM: Potential of glioblastoma-targeted chimeric antigen receptor (CAR) T-cell therapy. CNS Drugs. 34:127–145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et al: Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 20:506–518. 2018. View Article : Google Scholar : PubMed/NCBI | |
Neagu MR and Reardon DA: Rindopepimut vaccine and bevacizumab combination therapy: Improving survival rates in relapsed glioblastoma patients? Immunotherapy. 7:603–606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elsamadicy AA, Chongsathidkiet P, Desai R, Woroniecka K, Farber SH, Fecci PE and Sampson JH: Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther. 17:507–513. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gerstner ER: ACT IV: The final act for rindopepimut? Lancet Oncol. 18:1294–1296. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parney IF, Chang LJ, Farr-Jones MA, Hao C, Smylie M and Petruk KC: Technical hurdles in a pilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas. J Neurooncol. 78:71–80. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zaitsev S, Sharma HS, Sharma A, Manzhulo I, Polevshchikov A, Kudriavtsev I, Khotimchenko Y, Pak O, Bryukhovetskiy A and Bryukhovetskiy I: Pro-inflammatory modification of cancer cells microsurroundings increases the survival rates for rats with low differentiated malignant glioma of brain. Int Rev Neurobiol. 151:253–279. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann JE, Helseth E, et al: Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 62:1499–509. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomas AA, Fisher JL, Ernstoff MS and Fadul CE: Vaccine-based immunotherapy for glioblastoma. CNS Oncol. 2:331–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cuoco JA, Benko MJ, Busch CM, Rogers CM, Prickett JT and Marvin EA: Vaccine-Based immunotherapeutics for the treatment of glioblastoma: Advances, challenges, and future perspectives. World Neurosurg. 120:302–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee YS and Radford KJ: The role of dendritic cells in cancer. Int Rev Cell Mol Biol. 348:123–178. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA and Mitchell DA: The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang CN, Huang YC, Yang DM, Kikuta K, Wei KJ, Kubota T and Yang WK: A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci. 18:1048–1054. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V, et al: Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro Oncol. 13:132–142. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wick A, Desjardins A, Suarez C, Forsyth P, Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn MM, et al: Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs. 38:1570–1579. 2020. View Article : Google Scholar : PubMed/NCBI | |
Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK and Inman GJ: Multifaceted transforming growth factor-beta (TGFbeta) signalling in glioblastoma. Cell Signal. 72:1096382020. View Article : Google Scholar : PubMed/NCBI | |
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI | |
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, et al: Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 12:eaaw78432020. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ando M, Ito M, Srirat T, Kondo T and Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol Med. 43:1–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohme M, Schliffke S, Maire CL, Rünger A, Glau L, Mende KC, Matschke J, Gehbauer C, Akyüz N, Zapf S, et al: Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes. Clin Cancer Res. 24:4187–4200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Litak J, Mazurek M, Grochowski C, Kamieniak P and Roliński J: PD-L1/PD-1 axis in glioblastoma multiforme. Int J Mol Sci. 20:53472019. View Article : Google Scholar : PubMed/NCBI | |
Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Guo G, Guan H, Yu Y, Lu J and Yu J: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019. View Article : Google Scholar : PubMed/NCBI | |
Prionisti I, Bühler LH, Walker PR and Jolivet RB: Harnessing Microglia and macrophages for the treatment of glioblastoma. Front Pharmacol. 10:5062019. View Article : Google Scholar : PubMed/NCBI | |
Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, et al: Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunol Res. 7:1910–1927. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim MM, Umemura Y and Leung D: Bevacizumab and glioblastoma: Past, present, and future directions. Cancer J. 24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs. bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 Phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zuo W, Yang P and Zhang Y: Anti-PD-1, anti-VEGF, and temozolomide therapy in a patient with recurrent glioblastoma: A case report. J Int Med Res. 48:3000605209513952020.PubMed/NCBI | |
Kong Z, Wang Y and Ma W: Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother. 14:255–268. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Felice F, Pranno N, Marampon F, Musio D, Salducci M, Polimeni A and Tombolini V: Immune check-point in glioblastoma multiforme. Crit Rev Oncol Hematol. 138:60–69. 2019. View Article : Google Scholar : PubMed/NCBI | |
Di Giacomo AM, Valente M, Covre A, Danielli R and Maio M: Immunotherapy targeting immune check-point(s) in brain metastases. Cytokine Growth Factor Rev. 36:33–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
De Felice F, Musio D, Cassese R, Gravina GL and Tombolini V: New approaches in glioblastoma multiforme: The potential role of immune-check point inhibitors. Curr Cancer Drug Targets. 17:282–289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Oh IY, Mahanty A, Jin WL and Yoo JS: Immunotherapy for glioblastoma: Current state, challenges, and future perspectives. Cancers (Basel). 12:23342020. View Article : Google Scholar : PubMed/NCBI | |
Blumenthal DT, Gorlia T, Gilbert MR, Kim MM, Burt Nabors L, Mason WP, Hegi ME, Zhang P, Golfinopoulos V, Perry JR, et al: Is more better? The impact of extended adjuvant temozolomide in newly diagnosed glioblastoma: A secondary analysis of EORTC and NRG Oncology/RTOG. Neuro Oncol. 19:1119–1126. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy I, Bryukhovetskiy A, Khotimchenko Y and Mischenko P: Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme (Review). Oncol Rep. 35:639–648. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Hambardzumyan D: Immune microenvironment in glioblastoma subtypes. Front Immunol. 9:10042018. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko YS: Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy IS, Mischenko PV, Tolok EV, Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro. Oncol Lett. 9:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI | |
Milkina E, Ponomarenko A, Korneyko M, Lyakhova I, Zayats Y, Zaitsev S, Mischenko P, Eliseikina M, Khotimchenko Y, Shevchenko V, et al: Interaction of hematopoietic CD34+ CD45+ stem cells and cancer cells stimulated by TGF-β1 in a model of glioblastoma in vitro. Oncol Rep. 40:2595–2607. 2018.PubMed/NCBI | |
Calvi LM and Link DC: The hematopoietic stem cell niche in homeostasis and disease. Blood. 126:2443–2451. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy AS, Grivtsova LY and Sharma HS: Is the ALS a motor neuron disease or a hematopoietic stem cell disease? Prog Brain Res. 258:381–396. 2020. View Article : Google Scholar : PubMed/NCBI | |
de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L, Huber C, Gimenez G, Matcovitch-Natan O, Reinhardt S, David E, et al: C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell. 26:657–674.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yanada M, Takami A, Mizuno S, Mori J, Chou T, Usuki K, Uchiyama H, Amano I, Fujii S, Miyamoto T, et al: Autologous hematopoietic cell transplantation for acute myeloid leukemia in adults: 25 years of experience in Japan. Int J Hematol. 111:93–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arora S, Majhail NS and Liu H: Hematopoietic progenitor cell mobilization for autologous stem cell transplantation in multiple myeloma in contemporary Era. Clin Lymphoma Myeloma Leuk. 19:200–205. 2019. View Article : Google Scholar : PubMed/NCBI |