Regulation of ROCK1/2 by long non‑coding RNAs and circular RNAs in different cancer types (Review)
- Authors:
- Ammad Ahmad Farooqi
- Rabbia Zahid
- Humaira Naureen
- Rukset Attar
- Maria Gazouli
- Rossana Berardi
- Jolanta Szelachowska
- Rafał Matkowski
- Edyta Pawlak
-
Affiliations: Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering, Islamabad 54000, Pakistan, Institute of Chemistry, University of Punjab, Lahore 43000, Pakistan, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 54000, Pakistan, Department of Obstetrics and Gynecology, Yeditepe University 34280, Turkey, Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 54634, Greece, Oncology Clinic‑Marche Polytechnic University, Azienda Ospedaliero‑Universitaria Ospedali Riuniti Umberto I‑GM Lancisi‑G Salesi di Ancona, I‑60126 Ancona, Italy, Department of Oncology, Wroclaw Medical University, 53‑413 Wroclaw, Poland, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-013 Wroclaw, Poland - Published online on: March 22, 2022 https://doi.org/10.3892/ol.2022.13279
- Article Number: 159
-
Copyright: © Farooqi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
Weber J, Braun CJ, Saur D and Rad R: In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer. 20:573–593. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin A and Sheltzer JM: Discovering and validating cancer genetic dependencies: Approaches and pitfalls. Nat Rev Genet. 21:671–682. 2020. View Article : Google Scholar : PubMed/NCBI | |
Allam M, Cai S and Coskun AF: Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis Oncol. 4:112020. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noble ME, Endicott JA and Johnson LN: Protein kinase inhibitors: Insights into drug design from structure. Science. 303:1800–1805. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reubold TF and Eschenburg S: A molecular view on signal transduction by the apoptosome. Cell Signal. 24:1420–1425. 2012. View Article : Google Scholar : PubMed/NCBI | |
Janse van Rensburg HJ and Yang X: The roles of the Hippo pathway in cancer metastasis. Cell Signal. 28:1761–1772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lytle JR, Yario TA and Steitz JA: Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′UTR as in the 3′UTR. Proc Natl Acad Sci USA. 104:9667–9672. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R and Frank W: Transcriptional control of gene expression by microRNAs. Cell. 140:111–122. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL and Raj A: Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16:202015. View Article : Google Scholar : PubMed/NCBI | |
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 458:223–227. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS; Cancer Genome Atlas Research Network, ; et al: Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep. 23:297–312.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7:e307332012. View Article : Google Scholar : PubMed/NCBI | |
Shibata H, Oishi K, Yamagiwa A, Matsumoto M, Mukai H and Ono Y: PKNbeta interacts with the SH3 domains of Graf and a novel Graf related protein, Graf2, which are GTPase activating proteins for Rho family. J Biochem. 130:23–31. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N and Narumiya S: The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15:1885–1893. 1996. View Article : Google Scholar : PubMed/NCBI | |
Leung T, Manser E, Tan L and Lim L: A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 270:29051–29054. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Sun D, Tai J, Chen S, Yu M, Ren D and Wang L: TFAP2C promotes stemness and chemotherapeutic resistance in colorectal cancer via inactivating hippo signaling pathway. J Exp Clin Cancer Res. 37:272018. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Niu M, Li X, Lu D, Cui J, Xu W, Li G, Zhan J and Zhang H: FERM domain-containing protein FRMD5 regulates cell motility via binding to integrin β5 subunit and ROCK1. FEBS Lett. 588:4348–4356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Yi X, Deng J, Zou Y, Wang S, Shan W, Liu P, Zhang Z, Chen L and Hao L: ROCK2 promotes osteosarcoma growth and metastasis by modifying PFKFB3 ubiquitination and degradation. Exp Cell Res. 385:1116892019. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Du X, Yuan R, Chen L, Liu T, Wen C, Huang M, Li M, Hao L and Shao J: Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem Biophys Res Commun. 453:49–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang L, Du Y, Zheng H, Zhang P, Sun Y, Wang Y, Chen J, Ding P, Wang N, et al: A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene. 36:807–819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Yang S, Wang W, Wei P, He S, Ma H, Yang J, Wang Q, Cao L, Xiong W, et al: The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer. Oncogene. 38:1381–1397. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S and Hofacker IL: miRNAMap: Genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34:(Database Issue). D135–D139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, Rinn JL, Lee MG, Chen Y, Kantoff PW and Liu XS: Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun. 7:109822016. View Article : Google Scholar : PubMed/NCBI | |
Kumar MS, Lu J, Mercer KL, Golub TR and Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 39:673–677. 2007. View Article : Google Scholar : PubMed/NCBI | |
Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nair L, Chung H and Basu U: Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol. 21:123–136. 2020. View Article : Google Scholar : PubMed/NCBI | |
Geisler S and Coller J: RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Santer L, Bär C and Thum T: Circular RNAs: A novel class of functional RNA molecules with a therapeutic perspective. Mol Ther. 27:1350–1363. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Xiao Y, Ma L and Wang J: Regulating of cell cycle progression by the lncRNA CDKN2B-AS1/miR-324-5p/ROCK1 axis in laryngeal squamous cell cancer. Int J Biol Markers. 35:47–56. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Li X, Qiu M, Luo R, Lin J and Liu B: LncRNA EGFR-AS1 Upregulates ROCK1 by sponging miR-145 to promote esophageal squamous cell carcinoma cell invasion and migration. Cancer Biother Radiopharm. 35:66–71. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song L, Wang L, Pan X and Yang C: lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. Braz J Med Biol Res. 53:e88832020. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Zhang C, Guan H, Liu J and Cui Y: LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. J Cell Physiol. 234:7266–7278. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, Zhang Y and Lu Z: Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 17:892018. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Li Y, Chen Y, Zhang D, Wang X, Lu G, Ren M, Lu X and He S: DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway. Cell Prolif. 52:e126282019. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Xiang J, Zhang Q and Bian C: Long noncoding RNA POU3F3 promotes cancer cell proliferation in prostate carcinoma by upregulating rho-associated protein kinase 1. J Cell Biochem. Nov 26–2018.(Epub ahead of print). doi: 10.1002/jcb.28101. | |
Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, Kobayashi N, Todo Y and Watari H: Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res. 38:2952019. View Article : Google Scholar : PubMed/NCBI | |
Chen K and Zhang L: LINC00339 regulates ROCK1 by miR-152 to promote cell proliferation and migration in hepatocellular carcinoma. J Cell Biochem. 120:14431–14443. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng R, Zhang J and Chen J: lncRNA SNHG1 negatively regulates miRNA-101-3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med. 43:1157–1166. 2019.PubMed/NCBI | |
Zhuang S, Liu F and Wu P: Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J Cell Biochem. 120:13392–13402. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Liu Z, Lu S and Hu B: EPEL promotes the migration and invasion of osteosarcoma cells by upregulating ROCK1. Oncol Lett. 17:3133–3140. 2019.PubMed/NCBI | |
Hu M, Han Y, Zhang Y, Zhou Y and Ye L: lncRNA TINCR sponges miR-214-5p to upregulate ROCK1 in hepatocellular carcinoma. BMC Med Genet. 21:22020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wang WG and Zhang KQ: LINC00452 promotes ovarian carcinogenesis through increasing ROCK1 by sponging miR-501-3p and suppressing ubiquitin-mediated degradation. Aging (Albany NY). 12:21129–21146. 2020. View Article : Google Scholar : PubMed/NCBI | |
She JK, Fu DN, Zhen D, Gong GH and Zhang B: LINC01087 is highly expressed in breast cancer and regulates the malignant behavior of cancer cells through miR-335-5p/Rock1. Onco Targets Ther. 13:9771–9783. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang H and Wang Z and Wang Z: Long noncoding RNA KCNMB2-AS1 increases ROCK1 expression by sponging microRNA-374a-3p to facilitate the progression of non-small-cell lung cancer. Cancer Manag Res. 12:12679–12695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li D, Chen L, Hao B, Gao Y, Li L, Zhou C, He X and Cao Y: Long noncoding RNA LINC00346 promotes glioma cell migration, invasion and proliferation by up-regulating ROCK1. J Cell Mol Med. 24:13010–13019. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, He Z, Xu J, Chen P and Jiang J: Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death Dis. 12:362021. View Article : Google Scholar : PubMed/NCBI | |
Dai R, Zhou Y, Chen Z, Zou Z, Pan Z, Liu P and Gao X: Lnc-MUC20-9 binds to ROCK1 and functions as a tumor suppressor in bladder cancer. J Cell Biochem. 121:4214–4225. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Jiang S, Jian S and Shang Z: Long noncoding RNA MORT overexpression inhibits cancer cell proliferation in oral squamous cell carcinoma by downregulating ROCK1. J Cell Biochem. Feb 25–2019.(Epub ahead of print). doi: 10.1002/jcb.28449. View Article : Google Scholar | |
Xu K, Tian H, Zhao S, Yuan D, Jiang L, Liu X, Zou B and Zhang J: Long Noncoding RNA LOC441178 reduces the invasion and migration of squamous carcinoma cells by targeting ROCK1. Biomed Res Int. 2018:43576472018. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang L, Zhao W, Huang Y, Wang Z and Shen H: mi-R4435-2HG promotes proliferation and inhibits apoptosis of cancer cells in ovarian carcinoma by upregulating ROCK2. Oncol Lett. 19:1305–1309. 2020.PubMed/NCBI | |
Liu X, Li Y, Wen J, Qi T and Wang Y: Long non-coding RNA TTN-AS1 promotes tumorigenesis of ovarian cancer through modulating the miR-139-5p/ROCK2 axis. Biomed Pharmacother. 125:1098822020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhu Y and Ge C: LncRNA ZFAS1 promotes pancreatic adenocarcinoma metastasis via the RHOA/ROCK2 pathway by sponging miR-3924. Cancer Cell Int. 20:2492020. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Luan X, Chen H, Shi X and Zhang X: Long non-coding RNA EGFR-AS1 sponges micorRNA-381 to upregulate ROCK2 in bladder cancer. Oncol Lett. 19:1899–1905. 2020.PubMed/NCBI | |
Yuan S, Luan X, Han G, Guo K, Wang S and Zhang X: LINC01638 lncRNA mediates the postoperative distant recurrence of bladder cancer by upregulating ROCK2. Oncol Lett. 18:5392–5398. 2019.PubMed/NCBI | |
Fang G, Wang J, Sun X, Xu R, Zhao X, Shao L, Sun C and Wang Y: LncRNA MAGI2-AS3 is downregulated in the distant recurrence of hepatocellular carcinoma after surgical resection and affects migration and invasion via ROCK2. Ann Hepatol. 19:535–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, He Y, Shen G, Ni J, Xia Z, Liu H, Cao Y and Li X: lncRNA HAND2-AS1 mediates the downregulation of ROCK2 in hepatocellular carcinoma and inhibits cancer cell proliferation, migration and invasion. Mol Med Rep. 21:1304–1309. 2020.PubMed/NCBI | |
Zhang W, Shi J, Cheng C and Wang H: CircTIMELESS regulates the proliferation and invasion of lung squamous cell carcinoma cells via the miR-136-5p/ROCK1 axis. J Cell Physiol. 235:5962–5971. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liang L and Li L: Down-regulation of circNRIP1 promotes the apoptosis and inhibits the migration and invasion of gastric cancer cells by miR-182/ROCK1 Axis. Onco Targets Ther. 13:6279–6288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Li W, Liu G, Chen X, Gao X, Lu H and Lin D: A novel circular RNA, hsa_circ_0043278, acts as a potential biomarker and promotes non-small cell lung cancer cell proliferation and migration by regulating miR-520f. Artif Cells Nanomed Biotechnol. 47:810–821. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li W, Chen N, Zhao H, Xu G, Zhao Y, Pan X, Zhang X, Zhou L, Yu D, et al: FLI1 Exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin Cancer Res. 25:1302–1317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kai D, Yannian L, Yitian C, Dinghao G, Xin Z and Wu J: Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun. 503:863–869. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yin D, Wei G, Yang F and Sun X: Circular RNA has circ 0001591 promoted cell proliferation and metastasis of human melanoma via ROCK1/PI3K/AKT by targeting miR-431-5p. Hum Exp Toxicol. 40:310–324. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang L, Han D, Tursun K and Lu X: Circular RNA hsa_Circ_101141 as a competing endogenous RNA facilitates Tumorigenesis of hepatocellular carcinoma by regulating miR-1297/ROCK1 pathway. Cell Transplant. 29:9636897209480162020. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Jiang X, Liu Y, Cao G, Zhang X and Kuang Y: Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR-302b-3p/ROCK2 axis. Mol Cell Biochem. 476:199–212. 2021. View Article : Google Scholar : PubMed/NCBI |