1
|
Esu EB, Effa EE, Opie ON and Meremikwu MM:
Artemether for severe malaria. Cochrane Database Syst Rev.
6:CD0106782019.PubMed/NCBI
|
2
|
Visser BJ, Bierhoff M, van Gool T, van
Hattem JM, Grobusch MP and van Vugt M: The treatment of malaria.
Ned Tijdschr Geneeskd. 163:D33212019.(In Dutch).
|
3
|
Cheong DHJ, Tan DWS, Wong FWS and Tran T:
Anti-malarial drug, artemisinin and its derivatives for the
treatment of respiratory diseases. Pharmacol Res. 158:1049012020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Prabhu P, Suryavanshi S, Pathak S, Patra
A, Sharma S and Patravale V: Nanostructured lipid carriers of
artemether-lumefantrine combination for intravenous therapy of
cerebral malaria. Int J Pharm. 513:504–517. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ouji M, Barnoin G, Fernandez Alvarez A,
Augereau JM, Hemmert C, Benoit-Vical F and Gornitzka H: Hybrid
Gold(I) NHC-artemether complexes to target falciparum malaria
parasites. Molecules. 25:28172020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen J, Huang X, Tao C, Xiao T, Li X, Zeng
Q, Ma M and Wu Z: Artemether attenuates the progression of
non-small cell lung cancer by inducing apoptosis, cell cycle arrest
and promoting cellular senescence. Biol Pharm Bull. 42:1720–1725.
2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wu J, Li L, Wang Y, Ren X, Lin K and He Y:
The HSP90/Akt pathway may mediate artemether-induced apoptosis of
Cal27 cells. FEBS Open Bio. 9:1726–1733. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao X, Guo X, Yue W, Wang J, Yang J and
Chen J: Artemether suppresses cell proliferation and induces
apoptosis in diffuse large B cell lymphoma cells. Exp Ther Med.
14:4083–4090. 2017.PubMed/NCBI
|
9
|
Robinson JF, Hamilton EG, Lam J, Chen H
and Woodruff TJ: Differences in cytochrome p450 enzyme expression
and activity in fetal and adult tissues. Placenta. 100:35–44. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee CM, Lee J, Jang SN, Shon JC, Wu Z,
Park K, Liu KH and Park SH: 6,8-diprenylorobol induces apoptosis in
human hepatocellular carcinoma cells via activation of FOXO3 and
inhibition of CYP2J2. Oxid Med Cell Longev. 2020:88872512020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zou X and Mo Z: CYP2J2 is a diagnostic and
prognostic biomarker associated with immune infiltration in kidney
renal clear cell carcinoma. Biomed Res Int. 2021:37718662021.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Evangelista EA, Aliwarga T, Sotoodehnia N,
Jensen PN, McKnight B, Lemaitre RN, Totah RA and Gharib SA: CYP2J2
modulates diverse transcriptional programs in adult human
cardiomyocytes. Sci Rep. 10:53292020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bièche I, Narjoz C, Asselah T, Vacher S,
Marcellin P, Lidereau R, Beaune P and de Waziers I: Reverse
transcriptase-PCR quantification of mRNA levels from cytochrome
(CYP)1, CYP2 and CYP3 families in 22 different human tissues.
Pharmacogenet Genomics. 17:731–742. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tao P, Jiang Y, Wang H and Gao G:
CYP2J2-produced epoxyeicosatrienoic acids contribute to the
ferroptosis resistance of pancreatic ductal adenocarcinoma in a
PPARү-dependent manner. Zhong Nan Da Xue Xue Bao Yi Xue Ban.
46:932–941. 2021.(In Chinese). PubMed/NCBI
|
15
|
Jiang JG, Chen CL, Card JW, Yang S, Chen
JX, Fu XN, Ning YG, Xiao X, Zeldin DC and Wang DW: Cytochrome P450
2J2 promotes the neoplastic phenotype of carcinoma cells and is
up-regulated in human tumors. Cancer Res. 65:4707–4715. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lei X, Chen X, Quan Y, Tao Y and Li J:
Targeting CYP2J2 to enhance the anti-glioma efficacy of cannabinoid
receptor 2 stimulation by inhibiting the pro-angiogenesis function
of M2 microglia. Front Oncol. 10:5742772020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gui L, Xu Q, Huang J, Wu G, Tang H, Hui L,
Hua P, Zhang L and Zhu Y: CYP2J2 promotes the development of
hepatocellular carcinoma by increasing the EETs production to
improve HIF-1α stability. Am J Transl Res. 12:7923–7937.
2020.PubMed/NCBI
|
18
|
Khramtsov P, Kalashnikova T, Bochkova M,
Kropaneva M, Timganova V, Zamorina S and Rayev M: Measuring the
concentration of protein nanoparticles synthesized by desolvation
method: Comparison of Bradford assay, BCA assay, hydrolysis/UV
spectroscopy and gravimetric analysis. Int J Pharm. 599:1204222021.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hirschfeld M, Ge I, Rucker G, Waldschmidt
J, Mayer S, Jager M, Voigt M, Kammerer B, Nöthling C, Berner K, et
al: Mutually distinguishing microRNA signatures of breast, ovarian
and endometrial cancers in vitro. Mol Med Rep. 22:4048–4060.
2020.PubMed/NCBI
|
20
|
Zhang Y and Weinberg RA:
Epithelial-to-mesenchymal transition in cancer: Complexity and
opportunities. Front Med. 12:361–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hartke J, Johnson M and Ghabril M: The
diagnosis and treatment of hepatocellular carcinoma. Semin Diagn
Pathol. 34:153–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
European Association for the Study of the
Liver. Electronic address, . simpleEasloffice@easloffice.eu;
European Association for the Study of the Liver: ‘EASL Clinical
Practice Guidelines: Management of hepatocellular carcinoma’. J
Hepatol. 69:182–236. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
An Y, Jiang J, Zhou L, Shi J, Jin P, Li L,
Peng L, He S, Zhang W, Huang H, et al: Peroxiredoxin 1 is essential
for natamycin-triggered apoptosis and protective autophagy in
hepatocellular carcinoma. Cancer Lett. 521:210–223. 2021.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hou J, Wang D, Zhang R and Wang H:
Experimental therapy of hepatoma with artemisinin and its
derivatives: In vitro and in vivo activity, chemosensitization, and
mechanisms of action. Clin Cancer Res. 14:5519–5530. 2008.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Talman AM, Clain J, Duval R, Menard R and
Ariey F: Artemisinin bioactivity and resistance in malaria
parasites. Trends Parasitol. 35:953–963. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Menard D and Dondorp A: Antimalarial drug
resistance: A threat to malaria elimination. Cold Spring Harb
Perspect Med. 7:a0256192017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao Y, Feng YH, Gao LW, Li XY, Jin QX,
Wang YY, Xu YY, Jin F, Lu SL and Wei MJ: Artemisinin enhances the
anti-tumor immune response in 4T1 breast cancer cells in vitro and
in vivo. Int Immunopharmacol. 70:110–116. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang F, Zhou JY, Zhang D, Liu MH and Chen
YG: Artesunate induces apoptosis and autophagy in HCT116 colon
cancer cells, and autophagy inhibition enhances the
artesunate-induced apoptosis. Int J Mol Med. 42:1295–1304.
2018.PubMed/NCBI
|
30
|
Zhao F, Vakhrusheva O, Markowitsch SD,
Slade KS, Tsaur I, Cinatl J Jr, Michaelis M, Efferth T, Haferkamp A
and Juengel E: Artesunate impairs growth in cisplatin-resistant
bladder cancer cells by cell cycle arrest, apoptosis and autophagy
induction. Cells. 9:26432020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana
Prabha P and Zuo Z: Antitumor research on artemisinin and its
bioactive derivatives. Nat Prod Bioprospect. 8:303–319. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lanna EG, Siqueira RP, Machado MGC, de
Souza A, Trindade IC, Branquinho RT and Mosqueira VCF: Lipid-based
nanocarriers co-loaded with artemether and triglycerides of
docosahexaenoic acid: Effects on human breast cancer cells. Biomed
Pharmacother. 134:1111142021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tan WQ, Chen G, Ye M and Jia B: Artemether
regulates chemosensitivity to doxorubicin via regulation of B7-H3
in human neuroblastoma cells. Med Sci Monit. 23:4252–4259. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang YB, Hu Y, Li Z, Wang P, Xue YX, Yao
YL, Yu B and Liu YH: Artemether combined with shRNA interference of
vascular cell adhesion molecule-1 significantly inhibited the
malignant biological behavior of human glioma cells. PLoS One.
8:e608342013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Aliwarga T, Evangelista EA, Sotoodehnia N,
Lemaitre RN and Totah RA: Regulation of CYP2J2 and EET levels in
cardiac disease and diabetes. Int J Mol Sci. 19:19162018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Das A, Weigle AT, Arnold WR, Kim JS,
Carnevale LN and Huff HC: CYP2J2 molecular recognition: A new axis
for therapeutic design. Pharmacol Ther. 215:1076012020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Park SH, Phuc NM, Lee J, Wu Z, Kim J, Kim
H, Kim ND, Lee T, Song KS and Liu KH: Identification of
acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer
activity in HepG2 cells. Phytomedicine. 24:134–140. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Allison SE, Chen Y, Petrovic N, Zhang J,
Bourget K, Mackenzie PI and Murray M: Activation of ALDH1A1 in
MDA-MB-468 breast cancer cells that over-express CYP2J2 protects
against paclitaxel-dependent cell death mediated by reactive oxygen
species. Biochem Pharmacol. 143:79–89. 2017. View Article : Google Scholar : PubMed/NCBI
|