Role of von Willebrand factor in the angiogenesis of lung adenocarcinoma (Review)
- Authors:
- Xin Li
- Zhong Lu
-
Affiliations: Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China - Published online on: May 5, 2022 https://doi.org/10.3892/ol.2022.13319
- Article Number: 198
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kuhn E, Morbini P, Cancellieri A, Damiani S, Cavazza A and Comin CE: Adenocarcinoma classification: Patterns and prognosis. Pathologica. 110:5–11. 2018. | |
Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hynds RE, Ben Aissa A, Gowers KHC, Watkins TBK, Bosshard-Carter L, Rowan AJ, Veeriah S, Wilson GA, Quezada SA, Swanton C, et al: Expansion of airway basal epithelial cells from primary human non-small cell lung cancer tumors. Int J Cancer. 143:160–166. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Zhang L, Guo L, Wu C, Zhou J, Zhou Y, Ma J, Li X, Ji P, Wang M, et al: Comparative study on the mutational profile of adenocarcinoma and squamous cell carcinoma predominant histologic subtypes in Chinese non-small cell lung cancer patients. Thorac Cancer. 11:103–112. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Adjei AA: Lung cancer and metastasis: New opportunities and challenges. Cancer Metastasis Rev. 34:169–171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu B and Wei C: Hypoxia induces overexpression of CCL28 to recruit treg cells to enhance angiogenesis in lung adenocarcinoma. J Environ Pathol Toxicol Oncol. 40:65–74. 2021. View Article : Google Scholar | |
Zahn LM: Effects of the tumor microenvironment. Science. 355:1386–1388. 2017. View Article : Google Scholar | |
Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020. View Article : Google Scholar | |
Liu F, Wang B, Li L, Dong F, Chen X, Li Y, Dong X, Wada Y, Kapron CM and Liu J: Low-dose cadmium upregulates VEGF expression in lung adenocarcinoma cells. Int J Environ Res Public Health. 12:10508–10521. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Li Y, Dong F, Li L, Masuda T, Allen TD and Lobe CG: Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice. Biochem Biophys Res Commun. 463:1230–1236. 2015. View Article : Google Scholar : PubMed/NCBI | |
Frezzetti D, Gallo M, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, Normanno N and De Luca A: VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 21:959–966. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry DR, et al: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 383:31–39. 2014. View Article : Google Scholar | |
Kurzrock R and Stewart DJ: Exploring the Benefit/Risk associated with antiangiogenic agents for the treatment of non-small cell lung cancer patients. Clin Cancer Res. 23:1137–1148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TA, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, et al: Endothelial von Willebrand factor regulates angiogenesis. Blood. 117:1071–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Löf A, Müller JP and Brehm MA: A biophysical view on von Willebrand factor activation. J Cell Physiol. 233:799–810. 2018. View Article : Google Scholar | |
Kremer Hovinga JA, Coppo P, Lämmle B, Moake JL, Miyata T and Vanhoorelbeke K: Thrombotic thrombocytopenic purpura. Nat Rev Dis Primers. 3:170202017. View Article : Google Scholar : PubMed/NCBI | |
Sadler JE: Pathophysiology of thrombotic thrombocytopenic purpura. Blood. 130:1181–1188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou YF, Eng ET, Zhu J, Lu C, Walz T and Springer TA: Sequence and structure relationships within von Willebrand factor. Blood. 120:449–458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Schroeder JA, Luo X and Shi Q: The impact of von Willebrand factor on factor VIII memory immune responses. Blood Adv. 1:1565–1574. 2017. View Article : Google Scholar : PubMed/NCBI | |
O'Sullivan JM, Preston RJS, Robson T and O'Donnell JS: Emerging roles for von willebrand factor in cancer cell biology. Semin Thromb Hemost. 44:159–166. 2018. View Article : Google Scholar | |
Kawecki C, Lenting PJ and Denis CV: von Willebrand factor and inflammation. J Thromb Haemost. 15:1285–1294. 2017. View Article : Google Scholar | |
Wang X, Zhao J, Zhang Y, Xue X, Yin J, Liao L, Xu C, Hou Y, Yan S and Liu J: Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: A meta-analysis. Oncotarget. 8:90371–90379. 2017. View Article : Google Scholar | |
Li Y, Li L, Dong F, Guo L, Hou Y, Hu H, Yan S, Zhou X, Liao L, Allen TD and Liu JU: Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction. Exp Ther Med. 10:1743–1749. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Wang X, Fan M, Zhao J, Lin L and Liu J: Plasma levels of von Willebrand factor in type 2 diabetes patients with and without cardiovascular diseases: A meta-analysis. Diabetes Metab Res Rev. 36:e31932020. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Wang X, Peng X, Feng S, Zhao J, Liao L, Zhang Y, Hou Y and Liu J: Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events: A systematic review and meta-analysis. BMC Cardiovasc Disord. 20:722020. View Article : Google Scholar : PubMed/NCBI | |
Randi AM, Smith KE and Castaman G: von Willebrand factor regulation of blood vessel formation. Blood. 132:132–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Yang J, Liu X, Wu J and Chen Y: Increased von Willebrand factor over decreased ADAMTS-13 activity is associated with poor prognosis in patients with advanced non-small-cell lung cancer. J Clin Lab Anal. 32:e222192018. View Article : Google Scholar | |
Marfia G, Navone SE, Fanizzi C, Tabano S, Pesenti C, Abdel Hadi L, Franzini A, Caroli M, Miozzo M, Riboni L, et al: Prognostic value of preoperative von Willebrand factor plasma levels in patients with Glioblastoma. Cancer Med. 5:1783–1790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Obermeier HL, Riedl J, Ay C, Koder S, Quehenberger P, Bartsch R, Kaider A, Zielinski CC and Pabinger I: The role of ADAMTS-13 and von Willebrand factor in cancer patients: Results from the vienna cancer and thrombosis Study. Res Pract Thromb Haemost. 3:503–514. 2019. View Article : Google Scholar | |
Pépin M, Kleinjan A, Hajage D, Büller HR, Di Nisio M, Kamphuisen PW, Salomon L, Veyradier A, Stepanian A and Mahé I: ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost. 14:306–315. 2016. View Article : Google Scholar | |
Qi Y, Chen W, Liang X, Xu K, Gu X, Wu F, Fan X, Ren S, Liu J, Zhang J, et al: Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. J Hematol Oncol. 11:1172018. View Article : Google Scholar | |
Jin E, Ghazizadeh M, Fujiwara M, Nagashima M, Shimizu H, Ohaki Y, Arai S, Gomibuchi M, Takemura T and Kawanami O: Angiogenesis and phenotypic alteration of alveolar capillary endothelium in areas of neoplastic cell spread in primary lung adenocarcinoma. Pathol Int. 51:691–700. 2001. View Article : Google Scholar | |
Xu Y, Pan S, Liu J, Dong F, Cheng Z, Zhang J, Qi R, Zang Q, Zhang C, Wang X, et al: GATA3-induced vWF upregulation in the lung adenocarcinoma vasculature. Oncotarget. 8:110517–110529. 2017. View Article : Google Scholar | |
Morishita C, Jin E, Kikuchi M, Egawa S, Fujiwara M, Ohaki Y, Ghazizadeh M, Takemura T and Kawanami O: Angiogenic switching in the alveolar capillaries in primary lung adenocarcinoma and squamous cell carcinoma. J Nippon Med Sch. 74:344–354. 2007. View Article : Google Scholar : PubMed/NCBI | |
He Y, Liu R, Yang M, Bi W, Zhou L, Zhang S, Jin J, Liang X and Zhang P: Identification of VWF as a novel biomarker in lung adenocarcinoma by comprehensive analysis. Front Oncol. 11:6396002021. View Article : Google Scholar | |
Liu J, Yuan L, Molema G, Regan E, Janes L, Beeler D, Spokes KC, Okada Y, Minami T, Oettgen P and Aird WC: Vascular bed-specific regulation of the von Willebrand factor promoter in the heart and skeletal muscle. Blood. 117:342–351. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kanki Y, Okada Y, Jin E, Yano K, Shih SC, Minami T and Aird WC: A +220 GATA motif mediates basal but not endotoxin-repressible expression of the von Willebrand factor promoter in Hprt-targeted transgenic mice. J Thromb Haemost. 7:1384–1392. 2010. View Article : Google Scholar | |
Yuan L, Sacharidou A, Stratman AN, Le Bras A, Zwiers PJ, Spokes K, Bhasin M, Shih SC, Nagy JA, Molema G, et al: RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood. 118:1145–1153. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Liu Q, Yuan F, Guo S and Liu J, Sun Z, Gao P, Wang Y, Yan S and Liu J: Erg mediates downregulation of claudin-5 in the brain endothelium of a murine experimental model of cerebral malaria. FEBS Lett. 593:2585–2595. 2019. View Article : Google Scholar | |
Wang X, Dong F, Wang F, Yan S, Chen X, Tozawa H, Ushijima T, Kapron CM, Wada Y and Liu J: Low dose cadmium upregulates the expression of von Willebrand factor in endothelial cells. Toxicol Lett. 290:46–54. 2018. View Article : Google Scholar | |
Stockschlaeder M, Schneppenheim R and Budde U: Update on von Willebrand factor multimers: Focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul Fibrinolysis. 25:206–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kleinschmidt AM, Nassiri M, Stitt MS, Wasserloos K, Watkins SC, Pitt BR and Jahroudi N: Sequences in intron 51 of the von Willebrand factor gene target promoter activation to a subset of lung endothelial cells in transgenic mice. J Biol Chem. 283:2741–2750. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nassiri M, Liu J, Kulak S, Uwiera RR, Aird WC, Ballermann BJ and Jahroudi N: Repressors NFI and NFY participate in organ-specific regulation of von Willebrand factor promoter activity in transgenic mice. Arterioscler Thromb Vasc Biol. 30:1423–1429. 2010. View Article : Google Scholar | |
Harvey PJ, Keightley AM, Lam YM, Cameron C and Lillicrap D: A single nucleotide polymorphism at nucleotide-1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF: Ag levels. Br J Haematol. 109:349–353. 2000. View Article : Google Scholar | |
Lenting PJ, Christophe OD and Denis CV: von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood. 125:2019–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Shu Z, Liang Q, Zhang J, Wu W, Wang X and Zhou A: Structural basis of Von Willebrand Factor multimerization and tubular storage. Blood. 5–Feb;2022.doi: 10.1182/blood.2021014729. View Article : Google Scholar | |
van den Biggelaar M, Bierings R, Storm G, Voorberg J and Mertens K: Requirements for cellular co-trafficking of factor VIII and von Willebrand factor to Weibel-Palade bodies. J Thromb Haemost. 5:2235–2242. 2007. View Article : Google Scholar | |
Lopes da Silva M and Cutler DF: von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood. 128:277–285. 2016. View Article : Google Scholar : PubMed/NCBI | |
Randi AM and Laffan MA: Von Willebrand factor and angiogenesis: Basic and applied issues. J Thromb Haemost. 15:13–20. 2017. View Article : Google Scholar | |
Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G and Cheresh DA: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 79:1157–1164. 1994. View Article : Google Scholar | |
Sartori A, Portioli E, Battistini L, Calorini L, Pupi A, Vacondio F, Arosio D, Bianchini F and Zanardi F: Synthesis of Novel c(AmpRGD)-sunitinib dual conjugates as molecular tools targeting the αvβ3 Integrin/VEGFR2 couple and impairing tumor-associated angiogenesis. J Med Chem. 60:248–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Somanath PR, Malinin NL and Byzova TV: Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis. 12:177–1185. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lagrange J, Worou ME, Michel JB, Raoul A, Didelot M, Muczynski V, Legendre P, Plénat F, Gauchotte G, Lourenco-Rodrigues MD, et al: The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovasc Res. 118:622–637. 2022. View Article : Google Scholar : PubMed/NCBI | |
Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, Niedobitek G, Goodman SL and Schuppan D: Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology. 50:1501–1511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cossutta M, Darche M, Carpentier G, Houppe C, Ponzo M, Raineri F, Vallée B, Gilles ME, Villain D, Picard E, et al: Weibel-Palade bodies orchestrate pericytes during angiogenesis. Arterioscler Thromb Vasc Biol. 39:1843–1858. 2019. View Article : Google Scholar | |
Barton WA, Tzvetkova-Robev D, Miranda EP, Kolev MV, Rajashankar KR, Himanen JP and Nikolov DB: Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat Struct Mol Biol. 13:524–532. 2006. View Article : Google Scholar | |
Xu H, Cao Y, Yang X, Cai P, Kang L, Zhu X, Luo H, Lu L, Wei L, Bai X, et al: ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. Blood. 130:11–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scholz A, Plate KH and Reiss Y: Angiopoietin-2: A multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci. 1347:45–51. 2015. View Article : Google Scholar | |
Siveen KS, Prabhu K, Krishnankutty R, Kuttikrishnan S, Tsakou M, Alali FQ, Dermime S, Mohammad RM and Uddin S: Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: Potential and challenges. Curr Vasc Pharmacol. 15:339–351. 2017. View Article : Google Scholar | |
Saint-Lu N, Oortwijn BD, Pegon JN, Odouard S, Christophe OD, de Groot PG, Denis CV and Lenting PJ: Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler Thromb Vasc Biol. 32:894–901. 2012. View Article : Google Scholar | |
Tamura K, Hashimoto K, Suzuki K, Yoshie M, Kutsukake M and Sakurai T: Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Eur J Pharmacol. 610:61–67. 2009. View Article : Google Scholar | |
Pace A, Mandoj C, Antenucci A, Villani V, Sperduti I, Casini B, Carosi M, Fabi A, Vidiri A, Koudriavtseva T and Conti L: A predictive value of von Willebrand factor for early response to Bevacizumab therapy in recurrent glioma. J Neurooncol. 138:527–535. 2018. View Article : Google Scholar | |
Ishihara J, Ishihara A, Starke RD, Peghaire CR, Smith KE, McKinnon TAJ, Tabata Y, Sasaki K, White MJV, Fukunaga K, et al: The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood. 133:2559–2569. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bauer AT, Suckau J, Frank K, Desch A, Goertz L, Wagner AH, Hecker M, Goerge T, Umansky L, Beckhove P, et al: von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood. 125:3153–3163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lancellotti S, Sacco M, Basso M and De Cristofaro R: Mechanochemistry of von Willebrand factor. Biomol Concepts. 10:194–208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kappler S, Ronan-Bentle S and Graham A: Thrombotic microangiopathies (TTP, HUS, HELLP). Hematol Oncol Clin North Am. 31:1081–1103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takaya H, Uemura M, Fujimura Y, Matsumoto M, Matsuyama T, Kato S, Morioka C, Ishizashi H, Hori Y, Fujimoto M, et al: ADAMTS13 activity may predict the cumulative survival of patients with liver cirrhosis in comparison with the Child-Turcotte-Pugh score and the Model for End-stage liver disease score. Hepatol Res. 42:459–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Claus RA, Bockmeyer CL, Budde U, Kentouche K, Sossdorf M, Hilberg T, Schneppenheim R, Reinhart K, Bauer M, Brunkhorst FM and Lösche W: Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb Haemost. 101:239–247. 2009. View Article : Google Scholar | |
Yang R, Zhou Y, Du C and Wu Y: Bioinformatics analysis of differentially expressed genes in tumor and paracancerous tissues of patients with lung adenocarcinoma. J Thorac Dis. 12:7355–7364. 2020. View Article : Google Scholar : PubMed/NCBI | |
Federici AB: The use of desmopressin in von Willebrand disease: The experience of the first 30 years (1977–2007). Haemophilia. 14 (Suppl 1):S5–S14. 2008. View Article : Google Scholar | |
Gill JC, Castaman G, Windyga J, Kouides P, Ragni M, Leebeek FW, Obermann-Slupetzky O, Chapman M, Fritsch S, Pavlova BG, et al: Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease. Blood. 126:2038–2046. 2015. View Article : Google Scholar : PubMed/NCBI |