Interferon‑α and its effects on cancer cell apoptosis (Review)
- Authors:
- Weiye Shi
- Xu Yao
- Yu Fu
- Yingze Wang
-
Affiliations: College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China - Published online on: May 30, 2022 https://doi.org/10.3892/ol.2022.13355
- Article Number: 235
-
Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cheon H, Borden EC and Stark GR: Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol. 41:156–173. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bekisz J, Schmeisser H, Hernandez J, Goldman ND and Zoon KC: Human interferons alpha, beta and omega. Growth Factors. 22:243–251. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pestka S: The human interferon-alpha species and hybrid proteins. Semin Oncol. 24 (Suppl 9):S9-4-S9-17. 1997. | |
El-Baky NA and Redwan EM: Therapeutic alpha-interferons protein: Structure, production, and biosimilar. Prep Biochem Biotechnol. 45:109–127. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lazear HM, Schoggins JW and Diamond MS: Shared and distinct functions of type I and type III interferons. Immunity. 50:907–923. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blaauboer A, Sideras K, van Eijck CHJ and Hofland LJ: Type I interferons in pancreatic cancer and development of new therapeutic approaches. Crit Rev Oncol Hematol. 159:1032042021. View Article : Google Scholar : PubMed/NCBI | |
Grilo AL and Mantalaris A: Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol Adv. 37:459–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
McNab F, Mayer-Barber K, Sher A, Wack A and O'Garra A: Type I interferons in infectious disease. Nat Rev Immunol. 15:87–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zitvogel L, Galluzzi L, Kepp O, Smyth MJ and Kroemer G: Type I interferons in anticancer immunity. Nat Rev Immunol. 15:405–414. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bekisz J, Baron S, Balinsky C, Morrow A and Zoon KC: Antiproliferative properties of type I and type II interferon. Pharmaceuticals (Basel). 3:994–1015. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haji Abdolvahab M, Mofrad MR and Schellekens H: Interferon beta: From molecular level to therapeutic effects. Int Rev Cell Mol Biol. 326:343–372. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sin WX, Li P, Yeong JP and Chin KC: Activation and regulation of interferon-β in immune responses. Immunol Res. 53:25–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Markowitz CE: Interferon-beta: Mechanism of action and dosing issues. Neurology. 68 (Suppl 4):S8–S11. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kali SK, Dröge P and Murugan P: Interferon β, an enhancer of the innate immune response against SARS-CoV-2 infection. Microb Pathog. 158:1051052021. View Article : Google Scholar : PubMed/NCBI | |
Jakimovski D, Kolb C, Ramanathan M, Zivadinov R and Weinstock-Guttman B: Interferon β for multiple sclerosis. Cold Spring Harb Perspect Med. 8:a0320032018. View Article : Google Scholar : PubMed/NCBI | |
Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH and Borden EC: Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 8:237–249. 2003. View Article : Google Scholar : PubMed/NCBI | |
De Groof A, Ducreux J, Aleva F, Long AJ, Ferster A, van der Ven A, van de Veerdonk F, Houssiau FA and Lauwerys BR: STAT3 phosphorylation mediates the stimulatory effects of interferon alpha on B cell differentiation and activation in SLE. Rheumatology (Oxford). 59:668–677. 2020.PubMed/NCBI | |
Indraccolo S: Interferon-alpha as angiogenesis inhibitor: Learning from tumor models. Autoimmunity. 43:244–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kotredes KP and Gamero AM: Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res. 33:162–170. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pestka S, Krause CD and Walter MR: Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 202:8–32. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pestka S: Purification and cloning of interferon alpha. Curr Top Microbiol Immunol. 316:23–37. 2007.PubMed/NCBI | |
Pestka S: The human interferon alpha species and receptors. Biopolymers. 55:254–287. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wittling MC, Cahalan SR, Levenson EA and Rabin RL: Shared and unique features of human interferon-beta and interferon-alpha subtypes. Front Immunol. 11:6056732021. View Article : Google Scholar : PubMed/NCBI | |
Gibbert K, Schlaak JF, Yang D and Dittmer U: IFN-α subtypes: Distinct biological activities in anti-viral therapy. Br J Pharmacol. 168:1048–1058. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ortaldo JR, Herberman RB, Harvey C, Osheroff P, Pan YC, Kelder B and Pestka S: A species of human alpha interferon that lacks the ability to boost human natural killer activity. Proc Natl Acad Sci USA. 81:4926–4929. 1984. View Article : Google Scholar : PubMed/NCBI | |
Schreiber G: The molecular basis for differential type I interferon signaling. J Biol Chem. 292:7285–7294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schreiber G and Piehler J: The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol. 36:139–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schneider WM, Chevillotte MD and Rice CM: Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol. 32:513–545. 2014. View Article : Google Scholar : PubMed/NCBI | |
Furutani Y, Toguchi M, Shiozaki-Sato Y, Qin XY, Ebisui E, Higuchi S, Sudoh M, Suzuki H, Takahashi N, Watashi K, et al: An interferon-like small chemical compound CDM-3008 suppresses hepatitis B virus through induction of interferon-stimulated genes. PLoS One. 14:e02161392019. View Article : Google Scholar : PubMed/NCBI | |
Konishi H, Okamoto K, Ohmori Y, Yoshino H, Ohmori H, Ashihara M, Hirata Y, Ohta A, Sakamoto H, Hada N, et al: An orally available, small-molecule interferon inhibits viral replication. Sci Rep. 2:2592012. View Article : Google Scholar : PubMed/NCBI | |
Lightcap ES, Yu P, Grossman S, Song K, Khattar M, Xega K, He X, Gavin JM, Imaichi H, Garnsey JJ, et al: A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Sci Transl Med. 13:eaba77912021. View Article : Google Scholar : PubMed/NCBI | |
Krueger RE and Mayer GD: Tilorone hydrochloride: An orally active antiviral agent. Science. 169:1213–1214. 1970. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yao Q and Liu Z: An effective synthesis method for tilorone dihydrochloride with obvious IFN-α Inducing Activity. Molecules. 20:21458–21463. 2015. View Article : Google Scholar : PubMed/NCBI | |
Manfrere KC, Torrealba MP, Miyashiro DR, Oliveira LM, de Carvalho GC, Lima JF, Branco AC, Pereira NZ, Pereira J, Sanches JA Jr and Sato MN: Toll-like receptor agonists partially restore the production of pro-inflammatory cytokines and type I interferon in Sézary syndrome. Oncotarget. 7:74592–74601. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Putta MR, Bhagat L, Dai M, Wang D, Trombino AF, Sullivan T, Kandimalla ER and Agrawal S: Impact of secondary structure of toll-like receptor 9 agonists on interferon alpha induction. Antimicrob Agents Chemother. 52:4320–4325. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, Pandit B, Ihnat MA, Shenoy SS, Kulp S, et al: Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 70:2445–2454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, Schwartz EB, Lesinski GB, Benson D, Lü J, et al: A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer. 9:2172010. View Article : Google Scholar : PubMed/NCBI | |
Aziz N, Son YJ and Cho JY: Thymoquinone suppresses IRF-3-mediated expression of type I interferons via suppression of TBK1. Int J Mol Sci. 19:13552018. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Liu J and Cao X: Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J Autoimmun. 83:1–11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin Z and El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol Ther. 4:139–163. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vigneswara V and Ahmed Z: The role of caspase-2 in regulating cell fate. Cells. 9:12592020. View Article : Google Scholar : PubMed/NCBI | |
Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tummers B and Green DR: Caspase-8: Regulating life and death. Immunol Rev. 277:76–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sayers TJ: Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother. 8:1173–1180. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ashkenazi A: Targeting the extrinsic apoptotic pathway in cancer: Lessons learned and future directions. J Clin Invest. 125:487–489. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gibson CJ and Davids MS: BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 22:5021–5029. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Budihardjo I, Zou H, Slaughter C and Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94:481–490. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Burke PJ: Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Mu T, Wang G and Jiang X: Mitochondria-mediated apoptosis in mammals. Protein Cell. 5:737–749. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sano R and Reed JC: ER stress-induced cell death mechanisms. Biochim Biophys Acta. 1833:3460–3470. 2013. View Article : Google Scholar : PubMed/NCBI | |
Obeng EA and Boise LH: Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 280:29578–29587. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI | |
Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 6:533–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thyrell L, Erickson S, Zhivotovsky B, Pokrovskaja K, Sangfelt O, Castro J, Einhorn S and Grandér D: Mechanisms of Interferon-alpha induced apoptosis in malignant cells. Oncogene. 21:1251–1262. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S, Miyazoe S, Nakagawa Y, Ishikawa H, Hamasaki K, et al: Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene. 22:1653–1662. 2003. View Article : Google Scholar : PubMed/NCBI | |
Herzer K, Hofmann TG, Teufel A, Schimanski CC, Moehler M, Kanzler S, Schulze-Bergkamen H and Galle PR: IFN-alpha-induced apoptosis in hepatocellular carcinoma involves promyelocytic leukemia protein and TRAIL independently of p53. Cancer Res. 69:855–862. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zuo C, Qiu X, Liu N, Yang D, Xia M, Liu J, Wang X, Zhu H, Xie H, Dan H, et al: Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma. Exp Cell Res. 333:316–326. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li T, Dong ZR, Guo ZY, Wang CH, Tang ZY, Qu SF, Chen ZT, Li XW and Zhi XT: Aspirin enhances IFN-α-induced growth inhibition and apoptosis of hepatocellular carcinoma via JAK1/STAT1 pathway. Cancer Gene Ther. 20:366–374. 2013. View Article : Google Scholar : PubMed/NCBI | |
Quiroga AD, Alvarez Mde L, Parody JP, Ronco MT, Francés DE, Pisani GB, Carnovale CE and Carrillo MC: Involvement of reactive oxygen species on the apoptotic mechanism induced by IFN-alpha2b in rat preneoplastic liver. Biochem Pharmacol. 73:1776–1785. 2007. View Article : Google Scholar : PubMed/NCBI | |
Parody JP, Ceballos MP, Quiroga AD, Frances DE, Carnovale CE, Pisani GB, Alvarez ML and Carrillo MC: FoxO3a modulation and promotion of apoptosis by interferon-α2b in rat preneoplastic liver. Liver Int. 34:1566–1577. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quiroga AD, Vera MC, Ferretti AC, Lucci A, Comanzo CG, Lambertucci F, Ceballos MP and Carrillo MC: IFN-α-2b induces apoptosis by decreasing cellular cholesterol levels in rat preneoplastic hepatocytes. Cytokine. 133:1551722020. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Yang A, Wu TC and Hung CF: Immunotherapy for human papillomavirus-associated disease and cervical cancer: Review of clinical and translational research. J Gynecol Oncol. 27:e512016. View Article : Google Scholar : PubMed/NCBI | |
Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi WY, Cao C and Liu L: Interferon α induces the apoptosis of cervical cancer HeLa cells by activating both the intrinsic mitochondrial pathway and endoplasmic reticulum stress-induced pathway. Int J Mol Sci. 17:18322016. View Article : Google Scholar : PubMed/NCBI | |
Miyake K, Bekisz J, Zhao T, Clark CR and Zoon KC: Apoptosis-inducing factor (AIF) is targeted in IFN-α2a-induced Bid-mediated apoptosis through Bak activation in ovarian cancer cells. Biochim Biophys Acta. 1823:1378–1388. 2012. View Article : Google Scholar : PubMed/NCBI | |
Green DS, Husain SR, Johnson CL, Sato Y, Han J, Joshi B, Hewitt SM, Puri RK and Zoon KC: Combination immunotherapy with IL-4 Pseudomonas exotoxin and IFN-α and IFN-γ mediate antitumor effects in vitro and in a mouse model of human ovarian cancer. Immunotherapy. 11:483–496. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Liu J and Wang Y, Chen H, Ma Y and Wang Y and Wang Y: Enhanced anti-melanoma efficacy of interferon α-2b via overexpression of ING4 by enhanced Fas/FasL-mediated apoptosis. Oncol Lett. 15:9577–9583. 2018.PubMed/NCBI | |
Lesinski GB, Raig ET, Guenterberg K, Brown L, Go MR, Shah NN, Lewis A, Quimper M, Hade E, Young G, et al: IFN-alpha and bortezomib overcome Bcl-2 and Mcl-1 overexpression in melanoma cells by stimulating the extrinsic pathway of apoptosis. Cancer Res. 68:8351–8360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Minnie SA and Hill GR: Immunotherapy of multiple myeloma. J Clin Invest. 130:1565–1575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Benito M, Balsas P, Carvajal-Vergara X, Pandiella A, Anel A, Marzo I and Naval J: Mechanism of apoptosis induced by IFN-alpha in human myeloma cells: Role of Jak1 and Bim and potentiation by rapamycin. Cell Signal. 19:844–854. 2007. View Article : Google Scholar : PubMed/NCBI | |
Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, et al: Immunotherapy in renal cell carcinoma: The future is now. Int J Mol Sci. 21:25322020. View Article : Google Scholar : PubMed/NCBI | |
Clark PE, Polosukhina DA, Gyabaah K, Moses HL, Thorburn A and Zent R: TRAIL and interferon-alpha act synergistically to induce renal cell carcinoma apoptosis. J Urol. 184:1166–1174. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reiter M, Eckhardt I, Haferkamp A and Fulda S: Smac mimetic sensitizes renal cell carcinoma cells to interferon-α-induced apoptosis. Cancer Lett. 375:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bake V, Roesler S, Eckhardt I, Belz K and Fulda S: Synergistic interaction of Smac mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells. Cancer Lett. 355:224–231. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cowling V and Downward J: Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: Absolute requirement for removal of caspase-6 prodomain. Cell Death Diff. 9:1046–1056. 2002. View Article : Google Scholar : PubMed/NCBI | |
Inoue S, Browne G, Melino G and Cohen GM: Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16:1053–1061. 2009. View Article : Google Scholar : PubMed/NCBI | |
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, et al: Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, −3, −6, −7, −8, and −10 in a caspase-9-dependent manner. J Cell Biol. 144:281–292. 1999. View Article : Google Scholar : PubMed/NCBI | |
Aricò E, Castiello L, Capone I, Gabriele L and Belardelli F: Type I interferons and cancer: An evolving story demanding novel clinical applications. Cancers (Basel). 11:19432019. View Article : Google Scholar : PubMed/NCBI | |
Muñoz de Escalona Rojas JE, García Serrano JL, Cantero Hinojosa J, Padilla Torres JF and Bellido Muñoz RM: Application of interferon alpha 2b in conjunctival intraepithelial neoplasia: Predictors and prognostic factors. J Ocul Pharmacol Ther. 30:489–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoon SY and Won JH: The clinical role of interferon alpha in Philadelphia-negative myeloproliferative neoplasms. Blood Res. 56:S44–S50. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ghosh D, Ghosh D and Parida P: Physiological proteins in therapeutics: A current review on interferons. Mini Rev Med Chem. 12:947–952. 2016. View Article : Google Scholar : PubMed/NCBI | |
Di Trolio R, Simeone E, Di Lorenzo G, Buonerba C and Ascierto PA: The use of interferon in melanoma patients: A systematic review. Cytokine Growth Factor Rev. 2:203–312. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hauschild A, Kähler KC, Schäfer M and Fluck M: Interdisciplinary management recommendations for toxicity associated with interferon-alfa therapy. J Dtsch Dermatol Ges. 6:829–838. 2008.(In English, German). PubMed/NCBI | |
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the treatment of cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI |