1
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Sauer AG, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bauer KR, Brown M, Cress RD, Parise CA and
Caggiano V: Descriptive analysis of estrogen receptor
(ER)-negative, progesterone receptor (PR)-negative, and
HER2-negative invasive breast cancer, the so-called triple-negative
phenotype: A population-based study from the California cancer
registry. Cancer. 109:1721–1728. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kaplan HG, Malmgren JA and Atwood M: T1N0
triple negative breast cancer: Risk of recurrence and adjuvant
chemotherapy. Breast J. 15:454–460. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mersin H, Yildirim E, Berberoglu U and
Gülben K: The prognostic importance of triple negative breast
carcinoma. Breast. 17:341–346. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tan AR and Swain SM: Therapeutic
strategies for triple-negative breast cancer. Cancer J. 14:343–351.
2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheang MC, Voduc D, Bajdik C, Leung S,
McKinney S, Chia SK, Perou CM and Nielsen TO: Basal-like breast
cancer defined by five biomarkers has superior prognostic value
than triple-negative phenotype. Clin Cancer Res. 14:1368–1376.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Foulkes WD, Smith IE and Reis-Filho JS:
Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Venkatachalam K and Montell C: TRP
channels. Annu Rev Biochem. 76:387–417. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ma X, Chen Z, Hua D, He D, Wang L, Zhang
P, Wang J, Cai Y, Gao C, Zhang X, et al: Essential role for
TrpC5-containing extracellular vesicles in breast cancer with
chemotherapeutic resistance. Proc Natl Acad Sci USA. 111:6389–6394.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J
and Ma X: TRPC5-induced autophagy promotes drug resistance in
breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Rep.
7:31582017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dong Y, Pan Q, Jiang L, Chen Z, Zhang F,
Liu Y, Xing H, Shi M, Li J, Li XY, et al: Tumor endothelial
expression of P-glycoprotein upon microvesicular transfer of TrpC5
derived from adriamycin-resistant breast cancer cells. Biochem
Biophys Res Commun. 446:85–90. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ma X, Cai Y, He D, Zou C, Zhang P, Lo CY,
Xu Z, Chan FL, Yu S, Chen Y, et al: Transient receptor potential
channel TRPC5 is essential for P-glycoprotein induction in
drug-resistant cancer cells. Proc Natl Acad Sci USA.
109:16282–16287. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fagerberg L, Hallström BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wichman L, Somasundaram S, Breindel C,
Valerio DM, McCarrey JR, Hodges CA and Khalil AM: Dynamic
expression of long noncoding RNAs reveals their potential roles in
spermatogenesis and fertility. Biol Reprod. 97:313–323. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu CW, Zhou DD, Xie T, Hao JL, Pant OP, Lu
CB and Liu XF: HOXA11 antisense long noncoding RNA (HOXA11-AS): A
promising lncRNA in human cancers. Cancer Med. 7:3792–3799. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jiang M, Qiu N, Xia H, Liang H, Li H and
Ao X: Long noncoding RNA FOXD2AS1/miR1505p/PFN2 axis regulates
breast cancer malignancy and tumorigenesis. Int J Oncol.
54:1043–1052. 2019.PubMed/NCBI
|
18
|
Breast Cancer Association Consortium, .
Mavaddat N, Dorling L, Carvalho S, Allen J, González-Neira N,
Keeman R, Bolla MK, Dennis J, Wang Q, et al: Pathology of tumors
associated with pathogenic germline variants in 9 breast cancer
susceptibility genes. JAMA Oncol. 8:e2167442022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hitosugi T, Zhou L, Elf S, Fan J, Kang HB,
Seo JH, Shan C, Dai Q, Zhang L, Xie J, et al: Phosphoglycerate
mutase 1 coordinates glycolysis and biosynthesis to promote tumor
growth. Cancer Cell. 22:585–600. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arito M, Nagai K, Ooka S, Sato T, Takakuwa
Y, Kurokawa MS, Sase T, Okamoto K, Suematsu N, Kato T, et al:
Altered acetylation of proteins in patients with rheumatoid
arthritis revealed by acetyl-proteomics. Clin Exp Rheumatol.
33:877–886. 2015.PubMed/NCBI
|
22
|
Yuan L, Mishra R, Patel H, Abdulsalam S,
Greis KD, Kadekaro AL, Merino EJ and Garrett JT: Utilization of
reactive oxygen species targeted therapy to prolong the efficacy of
BRAF inhibitors in melanoma. J Cancer. 9:4665–4676. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Prasad S, Gupta SC and Tyagi AK: Reactive
oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
McDonald ES, Clark AS, Tchou J, Zhang P
and Freedman GM: Clinical diagnosis and management of breast
cancer. J Nucl Med. 57 (Suppl 1):9S–16S. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin L, Duan JJ, Bian XW and Yu SC:
Triple-negative breast cancer molecular subtyping and treatment
progress. Breast Cancer Res. 22:612020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Abdelmalek CM, Hu Z, Kronenberger T,
Küblbeck J, Kinnen FJM, Hesse SS, Malik A, Kudolo M, Niess R,
Gehringer M, et al: Gefitinib-tamoxifen hybrid ligands as potent
agents against triple-negative breast cancer. J Med Chem.
65:4616–4632. 2022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Paskins Z, Bromley K, Lewis M, Hughes G,
Hughes E, Hennings S, Cherrington A, Hall A, Holden MA, Stevenson
K, et al: Clinical effectiveness of one ultrasound guided
intra-articular corticosteroid and local anaesthetic injection in
addition to advice and education for hip osteoarthritis (HIT
trial): Single blind, parallel group, three arm, randomised
controlled trial. BMJ. 377:e0684462022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen P, Ning X, Li W, Pan Y, Wang L, Li H,
Fan X, Zhang J, Luo T, Wu Y, et al: Fabrication of
Tbeta4-exosome-releasing artificial stem cells for myocardial
infarction therapy by improving coronary collateralization. Bioact
Mater. 14:416–429. 2022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schneider BP, Winer EP, Foulkes WD, Garber
J, Perou CM, Richardson A, Sledge GW and Carey LA: Triple-negative
breast cancer: Risk factors to potential targets. Clin Cancer Res.
14:8010–8018. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang P, Li J, Peng C, Tan Y, Chen R, Peng
W, Gu Q, Zhou J, Wang L, Tang J, et al: TCONS_00012883 promotes
proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in
colorectal cancer. Clin Transl Med. 10:e2112020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu J, Wang F, Zhang J, Li J, Chen X and
Han G: LINC00667/miR-449b-5p/YY1 axis promotes cell proliferation
and migration in colorectal cancer. Cancer Cell Int. 20:3222020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Mohamed TMA, Ang YS, Radzinsky E, Zhou P,
Huang Y, Elfenbein A, Foley A, Magnitsky S and Srivastava D:
Regulation of cell cycle to stimulate adult cardiomyocyte
proliferation and cardiac regeneration. Cell. 173:104–116.e12.
2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pike MC, Spicer DV, Dahmoush L and Press
MF: Estrogens, progestogens, normal breast cell proliferation, and
breast cancer risk. Epidemiol Rev. 15:17–35. 1993. View Article : Google Scholar : PubMed/NCBI
|
34
|
Matson JP and Cook JG: Cell cycle
proliferation decisions: The impact of single cell analyses. FEBS
J. 284:362–375. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shostak A: Circadian clock, cell division,
and cancer: From molecules to organism. Int J Mol Sci. 18:8732017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Massague J: G1 cell-cycle control and
cancer. Nature. 432:298–306. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bartek J and Lukas J: Pathways governing
G1/S transition and their response to DNA damage. FEBS Lett.
490:117–122. 2001. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lupski JR: Genomic disorders: Structural
features of the genome can lead to DNA rearrangements and human
disease traits. Trends Genet. 14:417–422. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mizuno K, Miyabe I, Schalbetter SA, Carr
AM and Murray JM: Recombination-restarted replication makes
inverted chromosome fusions at inverted repeats. Nature.
493:246–249. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nowosad A and Besson A: Lysosomes at the
crossroads of cell metabolism, cell cycle, and stemness. Int J Mol
Sci. 23:22902022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Umeda S, Kanda M, Shimizu D, Nakamura S,
Sawaki K, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Nakayama G and
Kodera Y: Lysosomal-associated membrane protein family member 5
promotes the metastatic potential of gastric cancer cells. Gastric
Cancer. 25:558–572. 2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Finicle BT, Jayashankar V and Edinger AL:
Nutrient scavenging in cancer. Nat Rev Cancer. 18:619–633. 2018.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kang HJ, Jung SK, Kim SJ and Chung SJ:
Structure of human alpha-enolase (hENO1), a multifunctional
glycolytic enzyme. Acta Crystallogr D Biol Crystallogr. 64:651–657.
2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cappello P, Principe M, Bulfamante S and
Novelli F: Alpha-enolase (ENO1), a potential target in novel
immunotherapies. Front Biosci (Landmark Ed). 22:944–959. 2017.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Principe M, Borgoni S, Cascione M,
Chattaragada MS, Ferri-Borgogno S, Capello M, Bulfamante S,
Chapelle J, Modugno FD, Defilippi P, et al: Alpha-enolase (ENO1)
controls alpha v/beta 3 integrin expression and regulates
pancreatic cancer adhesion, invasion, and metastasis. J Hematol
Oncol. 10:162017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y
and Liu T: Up-regulated ENO1 promotes the bladder cancer cell
growth and proliferation via regulating beta-catenin. Biosci Rep.
39:BSR201905032019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang J, Li H, Miao L and Ding J:
Silencing of ENO1 inhibits the proliferation, migration and
invasion of human breast cancer cells. J BUON. 25:696–701.
2020.PubMed/NCBI
|
48
|
Song Y, Luo Q, Long H, Hu Z, Que T, Zhang
X, Li Z, Wang G, Yi L, Liu Z, et al: Alpha-enolase as a potential
cancer prognostic marker promotes cell growth, migration, and
invasion in glioma. Mol Cancer. 13:652014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Min Y, Kim MJ, Lee S, Chun E and Lee KY:
Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to
inhibition of NFKB activation and autophagy activation. Autophagy.
14:1347–1358. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Coumans JV, Gau D, Poljak A, Wasinger V,
Roy P and Moens PD: Profilin-1 overexpression in MDA-MB-231 breast
cancer cells is associated with alterations in proteomics
biomarkers of cell proliferation, survival, and motility as
revealed by global proteomics analyses. OMICS. 18:778–791. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Biterge-Sut B: Alterations in eukaryotic
elongation factor complex proteins (EEF1s) in cancer and their
implications in epigenetic regulation. Life Sci. 238:1169772019.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Palacios G, Shaw TI, Li Y, Singh RK,
Valentine M, Sandlund JT, Lim MS, Mullighan CG and Leventaki V:
Novel ALK fusion in anaplastic large cell lymphoma involving EEF1G,
a subunit of the eukaryotic elongation factor-1 complex. Leukemia.
31:743–747. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bengsch F, Tu Z, Tang HY, Zhu H, Speicher
DW and Zhang R: Comprehensive analysis of the ubiquitinome during
oncogene–induced senescence in human fibroblasts. Cell Cycle.
14:1540–1547. 2015. View Article : Google Scholar : PubMed/NCBI
|