1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu XD, Zeng YY, Wu XJ and Qin HY: The
prevalence and correlates of prehospital delay and health belief in
chinese patients with colorectal cancer. Gastroenterol Nurs.
43:186–195. 2020.PubMed/NCBI
|
3
|
Mobley LR and Kuo TM: Demographic
disparities in late-stage diagnosis of breast and colorectal
cancers across the USA. J Racial Ethn Health Disparities.
4:201–212. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vander Heiden MG and DeBerardinis RJ:
Understanding the intersections between metabolism and cancer
biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Graziosi L, Mencarelli A, Renga B, D'Amore
C, Bruno A, Santorelli C, Cavazzoni E, Cantarella F, Rosati E,
Donini A and Fiorucci S: Epigenetic modulation by methionine
deficiency attenuates the potential for gastric cancer cell
dissemination. J Gastrointest Surg. 17:39–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cavuoto P and Fenech MF: A review of
methionine dependency and the role of methionine restriction in
cancer growth control and life-span extension. Cancer Treat Rev.
38:726–736. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Epner DE, Morrow S, Wilcox M and Houghton
JL: Nutrient intake and nutritional indexes in adults with
metastatic cancer on a phase I clinical trial of dietary methionine
restriction. Nutr Cancer. 42:158–166. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gao X, Sanderson SM, Dai Z, Reid MA,
Cooper DE, Lu M, Richie JP Jr, Ciccarella A, Calcagnotto A, Mikhael
PG, et al: Dietary methionine influences therapy in mouse cancer
models and alters human metabolism. Nature. 572:397–401. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang D, Sherman B, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID gene functional classification tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jeggari A, Marks DS and Larsson E:
miRcode: A map of putative microRNA target sites in the long
non-coding transcriptome. Bioinformatics. 28:2062–2063. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Mármol I, Sanchez-de-Diego C, Pradilla
Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal Carcinoma: A
general overview and future perspectives in colorectal cancer. Int
J Mol Sci. 18:1972017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Halpern BC, Ezzell R, Hardy DN, Clark BR,
Ashe H, Halpern RM and Smith RA: Effect of methionine replacement
by homocystine in cultures containing both malignant rat breast
carcinosarcoma (Walker-256) cells and normal adult rat liver
fibroblasts. In Vitro. 11:14–19. 1975. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hanley MP, Kadaveru K, Perret C, Giardina
C and Rosenberg DW: Dietary methyl donor depletion suppresses
intestinal adenoma development. Cancer Prev Res. 9:812–820. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Komninou D, Leutzinger Y, Reddy B and
Richie JP Jr: Methionine restriction inhibits colon carcinogenesis.
Nutr Cancer. 54:202–208. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Park JH, Han Q, Zhao M, Tan Y, Higuchi T,
Yoon SN, Sugisawa N, Yamamoto J, Bouvet M, Clary B, et al: Oral
recombinant methioninase combined with oxaliplatinum and
5-fluorouracil regressed a colon cancer growing on the peritoneal
surface in a patient-derived orthotopic xenograft mouse model.
Tissue Cell. 61:109–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Park JH, Zhao M, Han Q, Sun Y, Higuchi T,
Sugisawa N, Yamamoto J, Singh SR, Clary B, Bouvet M and Hoffman RM:
Efficacy of oral recombinant methioninase combined with
oxaliplatinum and 5-fluorouracil on primary colon cancer in a
patient-derived orthotopic xenograft mouse model. Biochem Biophys
Res Comm. 518:306–310. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Machover D, Rossi L, Hamelin J, Desterke
C, Goldschmidt E, Chadefaux-Vekemans B, Bonnarme P, Briozzo P,
Kopečný D, Pierigè F, et al: Effects in cancer cells of the
recombinant l-methionine gamma-lyase from brevibacterium
aurantiacum. Encapsulation in human erythrocytes for sustained
l-methionine elimination. J Pharmacol Exp Ther. 369:489–502. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cuadrado A and Nebreda AR: Mechanisms and
functions of p38 MAPK signalling. Biochem J. 429:403–417. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Xin L, Cao WX, Fei XF, Wang Y, Liu WT, Liu
BY and Zhu ZG: Applying proteomic methodologies to analyze the
effect of methionine restriction on proliferation of human gastric
cancer SGC7901 cells. Clin Chim Acta. 377:206–212. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou L, Li S, Liu L, Zhou Q, Yuan Y and
Xin L: Recombinant methioninase regulates PI3K/Akt/Glut-1 pathway
and inhibits aerobic glycolysis to promote apoptosis of gastric
cancer cells. Nan Fang Yi Ke Da Xue Xue Bao. 40:27–33. 2020.(In
Chinese). PubMed/NCBI
|
23
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xin L, Yang WF, Zhang HT, Li YF and Liu C:
The mechanism study of lentiviral vector carrying methioninase
enhances the sensitivity of drug-resistant gastric cancer cells to
Cisplatin. Br J Cancer. 118:1189–1199. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stanelle J, Stiewe T, Theseling CC, Peter
M and Pützer BM: Gene expression changes in response to E2F1
activation. Nucleic Acids Res. 30:1859–1867. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fang Z, Lin M, Li C, Liu H and Gong C: A
comprehensive review of the roles of E2F1 in colon cancer. Am J
Cancer Res. 10:757–768. 2020.PubMed/NCBI
|
27
|
Liu H, Zhu C, Xu Z, Wang J, Qian L, Zhou
Q, Shen Z, Zhao W, Xiao W, Chen L and Zhou Y: lncRNA PART1 and
MIR17HG as ΔNp63α direct targets regulate tumor progression of
cervical squamous cell carcinoma. Cancer Sci. 111:4129–4141. 2020.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wei S, Liu J, Li X and Liu X: LncRNA
MIR17HG inhibits non-small cell lung cancer by upregulating
miR-142-3p to downregulate Bach-1. BMC Pulm Med. 20:782020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Meng Y, Hao D, Huang Y, Jia S, Zhang J, He
X, Sun L and Liu D: Positive feedback loop SP1/MIR17HG/miR-130a-3p
promotes osteosarcoma proliferation and cisplatin resistance.
Biochem Biophys Res Comm. 521:739–745. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu J, Meng Q, Li X, Yang H, Xu J, Gao N,
Sun H, Wu S, Familiari G, Relucenti M, et al: Long noncoding RNA
MIR17HG promotes colorectal cancer progression via miR-17-5p.
Cancer Res. 79:4882–4895. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zheng P and Li L: FANCI cooperates with
IMPDH2 to promote lung adenocarcinoma tumor growth via a
MEK/ERK/MMPs pathway. OncoTargets Ther. 13:451–463. 2020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kato T, Sato N, Hayama S, Yamabuki T, Ito
T, Miyamoto M, Kondo S, Nakamura Y and Daigo Y: Activation of
holliday junction recognizing protein involved in the chromosomal
stability and immortality of cancer cells. Cancer Res.
67:8544–8553. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hu Z, Huang G, Sadanandam A, Gu S, Lenburg
ME, Pai M, Bayani N, Blakely EA, Gray JW and Mao JH: The expression
level of HJURP has an independent prognostic impact and predicts
the sensitivity to radiotherapy in breast cancer. Breast Cancer
Res. 12:R182010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hu B, Wang Q, Wang Y, Chen J, Li P and Han
M: Holliday junction-recognizing protein promotes cell
proliferation and correlates with unfavorable clinical outcome of
hepatocellular carcinoma. Onco Targets Ther. 10:2601–2607. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li L, Li X, Meng Q, Khan AQ and Chen X:
Increased expression of holliday junction-recognizing protein
(HJURP) as an independent prognostic biomarker in advanced-stage
serous ovarian carcinoma. Med Sci Monit. 24:3050–3055. 2018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kang DH, Woo J, Kim H, Kim SY, Ji S,
Jaygal G, Ahn TS, Kim HJ, Kwak HJ, Kim CJ, et al: Prognostic
relevance of HJURP expression in patients with surgically resected
colorectal cancer. Int J Mol Sci. 21:79282020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen YF, Liang YX, Yang JA, Yuan DZ, Li J,
Zheng SS, Wan YP, Wang B, Han ZD and Zhong WD: Upregulation of
holliday junction recognition protein predicts poor prognosis and
biochemical recurrence in patients with prostate cancer. Oncol
Lett. 18:6697–6703. 2019.PubMed/NCBI
|
38
|
Wang CJ, Li X, Shi P, Ding HY, Liu YP, Li
T, Lin PP, Wang YS, Zhang GQ and Cao Y: Holliday junction
recognition protein promotes pancreatic cancer growth and
metastasis via modulation of the MDM2/p53 signaling. Cell Death
Dis. 11:3862020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen T, Huang H, Zhou Y, Geng L, Shen T,
Yin S, Zhou L and Zheng S: HJURP promotes hepatocellular carcinoma
proliferation by destabilizing p21 via the MAPK/ERK1/2 and
AKT/GSK3β signaling pathways. J Exp Clin Cancer Res. 37:1932018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei Y, Ouyang GL, Yao WX, Zhu YJ, Li X,
Huang LX, Yang XW and Jiang WJ: Knockdown of HJURP inhibits
non-small cell lung cancer cell proliferation, migration, and
invasion by repressing Wnt/β-catenin signaling. Eur Rev Med
Pharmacol Sci. 23:3847–3856. 2019.PubMed/NCBI
|
41
|
Chen T, Zhou L, Zhou Y, Zhou W, Huang H,
Yin S, Xie H, Zhou L and Zheng S: HJURP promotes
epithelial-to-mesenchymal transition via upregulating SPHK1 in
hepatocellular carcinoma. Int J Biol Sci. 15:1139–1147. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Cao R, Wang G, Qian K, Chen L, Qian G, Xie
C, Dan HC, Jiang W, Wu M, Wu CL, et al: Silencing of HJURP induces
dysregulation of cell cycle and ROS metabolism in bladder cancer
cells via PPARγ-SIRT1 feedback loop. J Cancer. 8:2282–2295. 2017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yuan JS, Chen ZS, Wang K and Zhang ZL:
Holliday junction-recognition protein modulates apoptosis, cell
cycle arrest and reactive oxygen species stress in human renal cell
carcinoma. Oncol Rep. 44:1246–1254. 2020. View Article : Google Scholar : PubMed/NCBI
|