Tumor metabolic reprogramming in lung cancer progression (Review)
- Authors:
- Xin Li
- Minghui Liu
- Hongyu Liu
- Jun Chen
-
Affiliations: Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China - Published online on: June 28, 2022 https://doi.org/10.3892/ol.2022.13407
- Article Number: 287
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tammemagi MC, Berg CD, Riley TL, Cunningham CR and Taylor KL: Impact of lung cancer screening results on smoking cessation. J Natl Cancer Inst. 106:dju0842014. View Article : Google Scholar | |
Sun S, Schiller JH and Gazdar AF: Lung cancer in never smokers-a different disease. Nat Rev Cancer. 7:778–790. 2007. View Article : Google Scholar : PubMed/NCBI | |
Relli V, Trerotola M, Guerra E and Alberti S: Abandoning the notion of non-small cell lung cancer. Trends Mol Med. 25:585–594. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Zhan Y, Liu S, Lu J, Luo J, Feng J and Fan S: The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res. 37:2262018. View Article : Google Scholar : PubMed/NCBI | |
Fernandez Y, Viesca M and Arvanitakis M: Early diagnosis and management of malignant distal biliary obstruction: A review on current recommendations and guidelines. Clin Exp Gastroenterol. 12:415–432. 2019. View Article : Google Scholar | |
Murphy RM, Watt MJ and Febbraio MA: Metabolic communication during exercise. Nat Metab. 2:805–816. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gururaja Rao S: Mitochondrial changes in cancer. Handb Exp Pharmacol. 240:211–227. 2017. View Article : Google Scholar | |
Chen Y, Chen Z, Feng JH, Chen YB, Liao NS, Su Y and Zou CY: Metabolic profiling of normal hepatocyte and hepatocellular carcinoma cells via 1H nuclear magnetic resonance spectroscopy. Cell Biol Int. 42:425–434. 2018. View Article : Google Scholar | |
Guppy M: The hypoxic core: A possible answer to the cancer paradox. Biochem Biophys Res Commun. 299:676–680. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kalyanaraman B: Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12:833–842. 2017. View Article : Google Scholar | |
Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moretti M, Bennett J, Tornatore L, Thotakura AK and Franzoso G: Cancer: NF-κB regulates energy metabolism. Int J Biochem Cell Biol. 44:2238–2243. 2012. View Article : Google Scholar | |
Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI | |
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar | |
Nagao A, Kobayashi M, Koyasu S, Chow CCT and Harada H: HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 20:2382019. View Article : Google Scholar | |
Musharraf SG, Mazhar S, Choudhary MI, Rizi N and Atta-ur-Rahman: Plasma metabolite profiling and chemometric analyses of lung cancer along with three controls through gas chromatography-mass spectrometry. Sci Rep. 5:86072015. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar | |
Lam C, Low JY, Tran PT and Wang H: The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett. 503:11–18. 2021. View Article : Google Scholar | |
Amelio I, Cutruzzola F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar | |
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, et al: A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 11:1672–1682. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu S and Herschman HR: A tumor agnostic therapeutic strategy for hexokinase 1-Null/Hexokinase 2-positive cancers. Cancer Res. 79:5907–5914. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY and Xu CJ: Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol. 95:9–16. 2018. View Article : Google Scholar | |
Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR and Lampidis TJ: 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64:31–34. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim SM, Yun MR, Hong YK, Solca F, Kim JH, Kim HJ and Cho BC: Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol Cancer Ther. 12:2145–2156. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar | |
Shen J, Jin Z, Lv H, Jin K, Jonas K, Zhu C and Chen B: PFKP is highly expressed in lung cancer and regulates glucose metabolism. Cell Oncol (Dordr). 43:617–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X and Lu Y: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol. 137:65–72. 2011. View Article : Google Scholar | |
Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y, et al: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 101:1447–1453. 2010. View Article : Google Scholar | |
Morita M, Sato T, Nomura M, Sakamoto Y, Inoue Y, Tanaka R, Ito S, Kurosawa K, Yamaguchi K, Sugiura Y, et al: PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell. 33:355–367. e72018. View Article : Google Scholar | |
Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar | |
Zhang X, Guo M, Fan J, Lv Z, Huang Q, Han J, Wu F, Hu G, Xu J and Jin Y: Prognostic significance of serum LDH in small cell lung cancer: A systematic review with meta-analysis. Cancer Biomark. 16:415–423. 2016. View Article : Google Scholar : PubMed/NCBI | |
Costa Leite T, Da Silva D, Guimaraes Coelho R, Zancan P and Sola-Penna M: Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem J. 408:123–130. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, et al: Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 71:4585–4597. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, et al: Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 9:332010. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371. e92017. View Article : Google Scholar | |
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar | |
Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, Bernard K, Thannickal VJ and Liu G: Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med. 192:1462–1474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH and Hsiao M: Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Cancer Lett. 403:28–36. 2017. View Article : Google Scholar | |
Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, Saez C, Iwakawa R, Villanueva A, Montuenga LM, et al: MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 4:292–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Koning TJ: Amino acid synthesis deficiencies. J Inherit Metab Dis. 40:609–620. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:7732016. View Article : Google Scholar : PubMed/NCBI | |
Scalise M, Pochini L, Galluccio M, Console L and Indiveri C: Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol. 7:3062017. View Article : Google Scholar | |
Serizawa M, Kusuhara M, Zangiacomi V, Urakami K, Watanabe M, Takahashi T, Yamaguchi K, Yamamoto N and Koh Y: Identification of metabolic signatures associated with erlotinib resistance of non-small cell lung cancer cells. Anticancer Res. 34:2779–2787. 2014.PubMed/NCBI | |
Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, et al: In vivo PET assay of tumor glutamine flux and metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology. 287:667–675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jeon SM, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29:966–978. e42019. View Article : Google Scholar : PubMed/NCBI | |
Simon J, Nunez-Garcia M, Fernandez-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, et al: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly. Cell Metab. 31:605–622. e102020. View Article : Google Scholar : PubMed/NCBI | |
Mates JM, Campos-Sandoval JA and Marquez J: Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim Biophys Acta Rev Cancer. 1870:158–164. 2018. View Article : Google Scholar : PubMed/NCBI | |
Daemen A, Liu B, Song K, Kwong M, Gao M, Hong R, Nannini M, Peterson D, Liederer BM, de la Cruz C, et al: Pan-Cancer metabolic signature predicts co-dependency on glutaminase and de novo glutathione synthesis linked to a high-mesenchymal cell state. Cell Metab. 28:383–399. e3892018. View Article : Google Scholar : PubMed/NCBI | |
Han T, Zhan W, Gan M, Liu F, Yu B, Chin YE and Wang JB: Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res. 28:655–669. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, Saland E, Decroocq J, Maciel TT, Lambert M, et al: Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 126:1346–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
van den Heuvel AP, Jing J, Wooster RF and Bachman KE: Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 13:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Lee HM, Cai F, Ko B, Yang C, Lieu EL, Muhammad N, Rhyne S, Li K, Haloul M, et al: The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nat Metab. 2:1401–1412. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sezgin E, Levental I, Mayor S and Eggeling C: The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 18:361–374. 2017. View Article : Google Scholar | |
Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI | |
Corbet C and Feron O: Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer. 1868:7–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al: Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 22:1108–1119. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, et al: De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 77:5503–5517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buckley D, Duke G, Heuer TS, O'Farrell M, Wagman AS, McCulloch W and Kemble G: Fatty acid synthase-Modern tumor cell biology insights into a classical oncology target. Pharmacol Ther. 177:23–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Tsai Y, Zhu R, Keng PC, Chen Y, Chen Y and Lee SO: FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:313–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI | |
Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Brenner A, Cook N, Lopez J, Pant S, et al: First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine. 34:1007972021. View Article : Google Scholar : PubMed/NCBI | |
Jones SF and Infante JR: Molecular pathways: Fatty acid synthase. Clin Cancer Res. 21:5434–5438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dang L, Yen K and Attar EC: IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 27:599–608. 2016. View Article : Google Scholar | |
Chen C, Liu Y, Lu C, Cross JR, Morris JP IV, Shroff AS, Ward PS, Bradner JE, Thompson C and Lowe SW: Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 27:1974–1985. 2013. View Article : Google Scholar : PubMed/NCBI | |
Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y, et al: ATP citrate lyase: Activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68:8547–8554. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chajes V, Cambot M, Moreau K, Lenoir GM and Joulin V: Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66:5287–5294. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, et al: Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9:416–435. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zaidi N, Swinnen JV and Smans K: ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 72:3709–3714. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA and Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 8:311–321. 2005. View Article : Google Scholar | |
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518. 2013. View Article : Google Scholar | |
Niu J, Sun Y, Chen B, Zheng B, Jarugumilli GK, Walker SR, Hata AN, Mino-Kenudson M, Frank DA and Wu X: Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation. Nature. 573:139–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mashima T, Oh-hara T, Sato S, Mochizuki M, Sugimoto Y, Yamazaki K, Hamada J, Tada M, Moriuchi T, Ishikawa Y, et al: p53-defective tumors with a functional apoptosome-mediated pathway: A new therapeutic target. J Natl Cancer Inst. 97:765–777. 2005. View Article : Google Scholar | |
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KS, Chintala R and Duddukuri GR: Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. 40–41:48–81. 2016. View Article : Google Scholar | |
Murray M, Hraiki A, Bebawy M, Pazderka C and Rawling T: Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther. 150:109–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vannitamby A, Saad MI, Aloe C, Wang H, Kumar B, Vlahos R, Selemidis S, Irving L, Steinfort D, Jenkins BJ and Bozinovski S: Aspirin-triggered resolvin D1 reduces proliferation and the neutrophil to lymphocyte ratio in a mutant KRAS-driven lung adenocarcinoma model. Cancers (Basel). 13:32242021. View Article : Google Scholar : PubMed/NCBI | |
Riedl K, Krysan K, Pold M, Dalwadi H, Heuze-Vourc'h N, Dohadwala M, Liu M, Cui X, Figlin R, Mao JT, et al: Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat. 7:169–184. 2004. View Article : Google Scholar | |
Xin C, Chu L, Zhang L, Geng D, Wang Y, Sun D, Sui P, Zhao X, Gong Z, Sui M and Zhang W: Expression of cytosolic phospholipase A2 (cPLA2)-arachidonic acid (AA)-Cyclooxygenase-2 (COX-2) pathway factors in lung cancer patients and its implication in lung cancer early detection and prognosis. Med Sci Monit. 25:5543–5551. 2019. View Article : Google Scholar | |
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kopecka J, Trouillas P, Gasparovic AC, Gazzano E, Assaraf YG and Riganti C: Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 49:1006702020. View Article : Google Scholar | |
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA and Ghavami S: Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther. 143:87–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gorin A, Gabitova L and Astsaturov I: Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol. 12:710–716. 2012. View Article : Google Scholar | |
Li D, Long W, Huang R, Chen Y and Xia M: 27-Hydroxycholesterol inhibits sterol regulatory element-binding protein 1 activation and hepatic lipid accumulation in mice. Obesity (Silver Spring). 26:713–722. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang B and Tontonoz P: Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 14:452–463. 2018. View Article : Google Scholar | |
Gibson DA, Collins F, Cousins FL, Esnal Zufiaurre A and Saunders PTK: The impact of 27-hydroxycholesterol on endometrial cancer proliferation. Endocr Relat Cancer. 25:381–391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yu DD, Hu Y, Cao HX, Yu SR, Liu SW and Feng JF: LXR ligands sensitize EGFR-TKI-resistant human lung cancer cells in vitro by inhibiting Akt activation. Biochem Biophys Res Commun. 467:900–905. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lo Sasso G, Bovenga F, Murzilli S, Salvatore L, Di Tullio G, Martelli N, D'Orazio A, Rainaldi S, Vacca M, Mangia A, et al: Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology. 144:1497–1507. 1507e1–13. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hiramitsu S, Ishikawa T, Lee WR, Khan T, Crumbley C, Khwaja N, Zamanian F, Asghari A, Sen M, Zhang Y, et al: Estrogen receptor beta-mediated modulation of lung cancer cell proliferation by 27-hydroxycholesterol. Front Endocrinol (Lausanne). 9:4702018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liu M, Liu J, Li X, Yang M, Su B and Lin Y: 27-Hydroxycholesterol enhanced osteoclastogenesis in lung adenocarcinoma microenvironment. J Cell Physiol. 234:12692–12700. 2019. View Article : Google Scholar | |
Chen Q, Pan Z, Zhao M, Wang Q, Qiao C, Miao L and Ding X: High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J Cell Physiol. 233:6722–6732. 2018. View Article : Google Scholar | |
Li J, Yan H, Zhao L, Jia W, Yang H, Liu L, Zhou X, Miao P, Sun X, Song S, et al: Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells. Oncotarget. 7:52392–52403. 2016. View Article : Google Scholar |