1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wójcik L, Samulak D, Makowska M,
Romanowicz H, Kojs Z, Smolarz B and Michalska MM: The role of human
papillomavirus in cervical cancer. Int J Cancer Clin Res.
6:1252019.
|
3
|
Van hede D, Langers I, Delvenne P and
Jacobs N: Origin and immunoescape of uterine cervical cancer.
Presse Med. 43:e413–e421. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang S, Xu H, Zhang L and Qiao Y:
Cervical cancer: Epidemiology, risk factors and screening. Chin J
Cancer Res. 32:720–728. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Momenimovahed Z and Salehiniya H:
Incidence, mortality and risk factors of cervical cancer in the
world. Biomed Res Ther. 4:1795–1811. 2017. View Article : Google Scholar
|
6
|
Chung SH, Franceschi S and Lambert PF:
Estrogen and ERalpha: Culprits in cervical cancer? Trends
Endocrinol Metab. 21:504–511. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Barros MR Jr, de Melo CML, Barros MLCMGR,
de Cássia Pereira de Lima R, de Freitas AC and Venuti A: Activities
of stromal and immune cells in HPV-related cancers. J Exp Clin
Cancer Res. 37:1372018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ding L, Liu C, Zhou Q, Feng M and Wang J:
Association of estradiol and HPV/HPV16 infection with the
occurrence of cervical squamous cell carcinoma. Oncol Lett.
17:3548–3554. 2019.
|
9
|
Adurthi S, Kumar MM, Vinodkumar HS,
Mukherjee G, Krishnamurthy H, Acharya KK, Bafna UD, Uma DK,
Abhishekh B, Krishna S, et al: Oestrogen Receptor-α binds the FOXP3
promoter and modulates regulatory T-cell function in human cervical
cancer. Sci Rep. 7:172892017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lopez-Pulido EI, Muñoz-Valle JF, Del
Toro-Arreola S, Jave-Suárez LF, Bueno-Topete MR, Estrada-Chávez C
and Pereira-Suárez AL: High expression of prolactin receptor is
associated with cell survival in cervical cancer cells. Cancer Cell
Int. 13:1032013. View Article : Google Scholar
|
11
|
Gruber CJ, Tschugguel W, Schneeberger C
and Huber JC: Production and actions of estrogens. N Engl J Med.
346:340–352. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shanle EK and Xu W: Endocrine disrupting
chemicals targeting estrogen receptor signaling: Identification and
mechanisms of action. Chem Res Toxicol. 24:6–19. 2011. View Article : Google Scholar
|
13
|
Mizukami Y: In vivo functions of
GPR30/GPER-1, a membrane receptor for estrogen: From discovery to
functions in vivo. Endocr J. 57:101–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Riera-Leal A, Ramírez De Arellano A,
Ramírez-López IG, Lopez-Pulido EI, Dávila Rodríguez JR,
Macías-Barragan JG, Ortiz-Lazareno PC, Jave-Suárez LF,
Artaza-Irigaray C, Del Toro Arreola S, et al: Effects of 60 kDa
prolactin and estradiol on metabolism and cell survival in cervical
cancer: Co-expression of their hormonal receptors during cancer
progression. Oncol Rep. 40:3781–3793. 2018.PubMed/NCBI
|
15
|
Hernandez-Silva CD, Riera-Leal A,
Ortiz-Lazareno PC, Jave-Suárez LF, Ramírez De Arellano A,
Lopez-Pulido EI, Macías-Barragan JG, Montoya-Buelna M,
Dávila-Rodríguez JR, Chabay P, et al: GPER overexpression in
cervical cancer versus premalignant lesions: Its activation induces
different forms of cell death. Anticancer Agents Med Chem.
19:783–791. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Brake T and Lambert PF: Estrogen
contributes to the onset, persistence, and malignant progression of
cervical cancer in a human papillomavirus-transgenic mouse model.
Proc Natl Acad Sci USA. 102:2490–2495. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chung SH, Wiedmeyer K, Shai A, Korach KS
and Lambert PF: Requirement for estrogen receptor alpha in a mouse
model for human papillomavirus-associated cervical cancer. Cancer
Res. 68:9928–9934. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bernard V, Young J, Chanson P and Binart
N: New insights in prolactin: Pathological implications. Nat Rev
Endocrinol. 11:265–275. 2015. View Article : Google Scholar
|
19
|
Marano RJ and Ben-Jonathan N: Minireview:
Extrapituitary prolactin: An update on the distribution,
regulation, and functions. Mol Endocrinol. 28:622–633. 2014.
View Article : Google Scholar
|
20
|
Brooks CL: Molecular mechanisms of
prolactin and its receptor. Endocr Rev. 33:504–525. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ascencio-Cedillo R, López-Pulido EI,
Muñoz-Valle JF, Villegas-Sepúlveda N, Del Toro-Arreola S,
Estrada-Chávez C, Daneri-Navarro A, Franco-Topete R, Pérez-Montiel
D, García-Carrancá A and Pereira-Suárez AL: Prolactin and prolactin
receptor expression in cervical intraepithelial neoplasia and
cancer. Pathol Oncol Res. 21:241–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ramírez De Arellano A, Riera Leal A,
Lopez-Pulido EI, González-Lucano LR, Macías Barragan J, Del Toro
Arreola S, García-Chagollan M, Palafox-Sánchez CA, Muñoz-Valle JF
and Pereira-Suárez AL: A 60 kDa prolactin variant secreted by
cervical cancer cells modulates apoptosis and cytokine production.
Oncol Rep. 39:1253–1260. 2018.
|
23
|
Abramicheva PA and Smirnova OV: Prolactin
receptor isoforms as the basis of tissue-specific action of
prolactin in the norm and pathology. Biochemistry (Mosc).
84:329–345. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hsu CT, Yu MH, Lee CY, Jong HL and Yeh MY:
Ectopic production of prolactin in uterine cervical carcinoma.
Gynecol Oncol. 44:166–171. 1992. View Article : Google Scholar
|
25
|
Ramírez de Arellano A, Lopez-Pulido EI,
Martínez-Neri PA, Estrada Chávez C, González Lucano R,
Fafutis-Morris M, Aguilar-Lemarroy A, Muñoz-Valle JF and
Pereira-Suárez AL: STAT3 activation is required for the
antiapoptotic effects of prolactin in cervical cancer cells. Cancer
Cell Int. 15:832015. View Article : Google Scholar
|
26
|
Cooper MA, Fehniger TA and Caligiuri MA:
The biology of human natural killer-cell subsets. Trends Immunol.
22:633–640. 2001. View Article : Google Scholar
|
27
|
Vivier E, Raulet DH, Moretta A, Caligiuri
MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or
Adaptive Immunity? The example of natural killer cells. Science.
331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Brandt CS, Baratin M, Yi EC, Kennedy J,
Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, et
al: The B7 family member B7-H6 is a tumor cell ligand for the
activating natural killer cell receptor NKp30 in humans. J Exp Med.
206:1495–1503. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Srivastava RM, Savithri B and Khar A:
Activating and inhibitory receptors and their role in natural
killer cell function. Indian J Biochem Biophys. 40:291–299.
2003.PubMed/NCBI
|
30
|
Jimenez-Perez MI, Jave-Suarez LF,
Ortiz-Lazareno PC, Bravo-Cuellar A, Gonzalez-Ramella O,
Aguilar-Lemarroy A, Hernandez-Flores G, Pereira-Suarez AL,
Daneri-Navarro A and del Toro-Arreola S: Cervical cancer cell lines
expressing NKG2D-ligands are able to down-modulate the NKG2D
receptor on NKL cells with functional implications. BMC Immunol.
13:72012. View Article : Google Scholar
|
31
|
Garcia-Iglesias T, Del Toro-Arreola A,
Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE,
Ramirez-Dueñas MG, Balderas-Peña LM, Bravo-Cuellar A,
Ortiz-Lazareno PC and Daneri-Navarro A: Low NKp30, NKp46 and NKG2D
expression and reduced cytotoxic activity on NK cells in cervical
cancer and precursor lesions. BMC Cancer. 9:1862009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y,
Wang Y, Xiong F, Guo C, Li Y, et al: Natural killer group 2D
receptor and its ligands in cancer immune escape. Mol Cancer.
18:292019. View Article : Google Scholar : PubMed/NCBI
|
33
|
López-Soto A, Huergo-Zapico L,
Acebes-Huerta A, Villa-Alvarez M and Gonzalez S: NKG2D signaling in
cancer immunosurveillance: NKG2D signaling. Int J Cancer.
136:1741–1750. 2015. View Article : Google Scholar
|
34
|
Baragaño Raneros A, Suarez-Álvarez B and
López-Larrea C: Secretory pathways generating immunosuppressive
NKG2D ligands: New targets for therapeutic intervention.
Oncoimmunology. 3:e284972014. View Article : Google Scholar
|
35
|
Chitadze G, Bhat J, Lettau M, Janssen O
and Kabelitz D: Generation of soluble NKG2D ligands: Proteolytic
cleavage, exosome secretion and functional implications. Scand J
Immunol. 78:120–129. 2013. View Article : Google Scholar
|
36
|
Curran EM, Berghaus LJ, Vernetti NJ,
Saporita AJ, Lubahn DB and Estes DM: Natural killer cells express
estrogen receptor-alpha and estrogen receptor-beta and can respond
to estrogen via a non-estrogen receptor-alpha-mediated pathway.
Cell Immunol. 214:12–20. 2001. View Article : Google Scholar
|
37
|
Sun R, Li AL, Wei HM and Tian ZG:
Expression of prolactin receptor and response to prolactin
stimulation of human NK cell lines. Cell Res. 14:67–73. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Jiang X, Ellison SJ, Alarid ET and Shapiro
DJ: Interplay between the levels of estrogen and estrogen receptor
controls the level of the granzyme inhibitor, proteinase inhibitor
9 and susceptibility to immune surveillance by natural killer
cells. Oncogene. 26:4106–4114. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang X, Orr BA, Kranz DM and Shapiro DJ:
Estrogen induction of the granzyme B inhibitor, proteinase
inhibitor 9, protects cells against apoptosis mediated by cytotoxic
T lymphocytes and natural killer cells. Endocrinology.
147:1419–1426. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mavoungou E, Bouyou-Akotet MK and Kremsner
PG: Effects of prolactin and cortisol on natural killer (NK) cell
surface expression and function of human natural cytotoxicity
receptors (NKp46, NKp44 and NKp30). Clin Exp Immunol. 139:287–296.
2005. View Article : Google Scholar
|
41
|
Basu S, Pioli PA, Conejo-Garcia J, Wira CR
and Sentman CL: Estradiol regulates MICA expression in human
endometrial cells. Clin Immunol. 129:325–332. 2008. View Article : Google Scholar
|
42
|
Ren J, Nie Y, Lv M, Shen S, Tang R, Xu Y,
Hou Y, Zhao S and Wang T: Estrogen upregulates MICA/B expression in
human non-small cell lung cancer through the regulation of ADAM17.
Cell Mol Immunol. 12:768–776. 2015. View Article : Google Scholar
|
43
|
Wolfson B, Padget MR, Schlom J and Hodge
JW: Exploiting off-target effects of estrogen deprivation to
sensitize estrogen receptor negative breast cancer to immune
killing. J Immunother Cancer. 9:e0022582021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gunesch JT, Angelo LS, Mahapatra S,
Deering RP, Kowalko JE, Sleiman P, Tobias JW, Monaco-Shawver L,
Orange JS and Mace EM: Genome-wide analyses and functional
profiling of human NK cell lines. Mol Immunol. 115:64–75. 2019.
View Article : Google Scholar
|
45
|
del Toro-Arreola S, Arreygue-Garcia N,
Aguilar-Lemarroy A, Cid-Arregui A, Jimenez-Perez M, Haramati J,
Barros-Nuñez P, Gonzalez-Ramella O, Del Toro-Arreola A,
Ortiz-Lazareno P, et al: MHC class I-related chain A and B ligands
are differentially expressed in human cervical cancer cell lines.
Cancer Cell Int. 11:152011. View Article : Google Scholar
|
46
|
Huang Y, Li J, Xiang L, Han D, Shen X and
Wu X: 17β-Oestradiol activates proteolysis and increases invasion
through phosphatidylinositol 3-kinase pathway in human cervical
cancer cells. Eur J Obstet Gynecol Reprod Biol. 165:307–312. 2012.
View Article : Google Scholar
|
47
|
Riera Leal A, Ortiz-Lazareno PC,
Jave-Suárez LF, Ramírez De Arellano A, Aguilar-Lemarroy A,
Ortiz-García YM, Barrón-Gallardo CA, Solís-Martínez R, Luquin De
Anda S, Muñoz-Valle JF and Pereira-Suárez AL: 17β-estradiol-induced
mitochondrial dysfunction and Warburg effect in cervical cancer
cells allow cell survival under metabolic stress. Int J Oncol.
56:33–46. 2020.
|
48
|
Ramírez-López IG, Ramírez de Arellano A,
Jave-Suárez LF, Hernández-Silva CD, García-Chagollan M,
Hernández-Bello J, Lopez-Pulido EI, Macias-Barragan J,
Montoya-Buelna M, Muñoz-Valle JF and Pereira-Suárez AL: Interaction
between 17β-estradiol, prolactin and human papillomavirus induce
E6/E7 transcript and modulate the expression and localization of
hormonal receptors. Cancer Cell Int. 19:2272019. View Article : Google Scholar
|
49
|
Leondires MP, Hu ZZ, Dong J, Tsai-Morris
CH and Dufau ML: Estradiol stimulates expression of two human
prolactin receptor isoforms with alternative exons-1 in T47D breast
cancer cells. J Steroid Biochem Mol Biol. 82:263–268. 2002.
View Article : Google Scholar
|
50
|
Adamson AD, Friedrichsen S, Semprini S,
Harper CV, Mullins JJ, White MR and Davis JR: Human prolactin gene
promoter regulation by estrogen: Convergence with tumor necrosis
factor-alpha signaling. Endocrinology. 149:687–694. 2008.
View Article : Google Scholar : PubMed/NCBI
|
51
|
González L, Zambrano A, Lazaro-Trueba I,
Lopéz E, González JJA, Martín-Pérez J and Aranda A: Activation of
the unliganded estrogen receptor by prolactin in breast cancer
cells. Oncogene. 28:1298–1308. 2009. View Article : Google Scholar
|
52
|
Sasagawa T, Takagi H and Makinoda S:
Immune responses against human papillomavirus (HPV) infection and
evasion of host defense in cervical cancer. J Infect Chemother.
18:807–815. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Garzetti G, Ciavattini A, Muzzioli M,
Goteri G, Mannello B, Romanini C and Fabris N: Natural killer cell
activity in patients with invasive cervical carcinoma: Importance
of a longitudinal evaluation in follow-up. Gynecol Obstet Invest.
40:133–138. 1995. View Article : Google Scholar
|
54
|
Textor S, Dürst M, Jansen L, Accardi R,
Tommasino M, Trunk MJ, Porgador A, Watzl C, Gissmann L and Cerwenka
A: Activating NK cell receptor ligands are differentially expressed
during progression to cervical cancer. Int J Cancer. 123:2343–2353.
2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chang WC, Li CH, Chu LH, Huang PS, Sheu BC
and Huang SC: Regulatory T cells suppress natural killer cell
immunity in patients with human cervical carcinoma. Int J Gynecol
Cancer. 26:156–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Arreygue-Garcia NA, Daneri-Navarro A, del
Toro-Arreola A, Cid-Arregui A, Gonzalez-Ramella O, Jave-Suarez LF,
Aguilar-Lemarroy A, Troyo-Sanroman R, Bravo-Cuellar A, Delgado-Rizo
V, et al: Augmented serum level of major histocompatibility complex
class I-related chain A (MICA) protein and reduced NKG2D expression
on NK and T cells in patients with cervical cancer and precursor
lesions. BMC Cancer. 8:162008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hao S, Zhao J, Zhou J, Zhao S, Hu Y and
Hou Y: Modulation of 17beta-estradiol on the number and
cytotoxicity of NK cells in vivo related to MCM and activating
receptors. Int Immunopharmacol. 7:1765–1775. 2007. View Article : Google Scholar
|
58
|
Hao S, Li P, Zhao J, Hu Y and Hou Y:
17beta-estradiol suppresses cytotoxicity and proliferative capacity
of murine splenic NK1.1+ cells. Cell Mol Immunol. 5:357–364. 2008.
View Article : Google Scholar
|
59
|
Arnal JF, Lenfant F, Metivier R, Flouriot
G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P,
Katzenellenbogen B and Katzenellenbogen J: Membrane and nuclear
estrogen receptor alpha actions: from tissue specificity to medical
implications. Physiol Rev. 97:1045–1087. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Pierdominici M, Maselli A, Colasanti T,
Giammarioli AM, Delunardo F, Vacirca D, Sanchez M, Giovannetti A,
Malorni W and Ortona E: Estrogen receptor profiles in human
peripheral blood lymphocytes. Immunol Lett. 132:79–85. 2010.
View Article : Google Scholar
|
61
|
Penot G, Le Péron C, Mérot Y,
Grimaud-Fanouillère E, Ferrière F, Boujrad N, Kah O, Saligaut C,
Ducouret B, Métivier R and Flouriot G: The human estrogen
receptor-alpha isoform hERalpha46 antagonizes the proliferative
influence of hERalpha66 in MCF7 breast cancer cells. Endocrinology.
146:5474–5484. 2005. View Article : Google Scholar : PubMed/NCBI
|
62
|
Miller MM, McMullen PD, Andersen ME and
Clewell RA: Multiple receptors shape the estrogen response pathway
and are critical considerations for the future of in vitro-based
risk assessment efforts. Crit Rev Toxicol. 47:570–586. 2017.
View Article : Google Scholar
|
63
|
Leung YK, Mak P, Hassan S and Ho SM:
Estrogen receptor (ER)-beta isoforms: A key to understanding
ER-beta signaling. Proc Natl Acad Sci USA. 103:13162–13167. 2006.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Saunders PT, Millar MR, Williams K,
Macpherson S, Bayne C, O'Sullivan C, Anderson TJ, Groome NP and
Miller WR: Expression of oestrogen receptor beta (ERbeta1) protein
in human breast cancer biopsies. Br J Cancer. 86:250–256. 2002.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Gaudet HM, Cheng SB, Christensen EM and
Filardo EJ: The G-protein coupled estrogen receptor, GPER: The
inside and inside-out story. Mol Cell Endocrinol. 418:207–219.
2015. View Article : Google Scholar
|
66
|
Sandén C, Broselid S, Cornmark L,
Andersson K, Daszkiewicz-Nilsson J, Mårtensson UE, Olde B and
Leeb-Lundberg LM: G protein-coupled estrogen receptor 1/G
protein-coupled receptor 30 localizes in the plasma membrane and
traffics intracellularly on cytokeratin intermediate filaments. Mol
Pharmacol. 79:400–410. 2011. View Article : Google Scholar
|
67
|
Jala VR, Radde BN, Haribabu B and Klinge
CM: Enhanced expression of G-protein coupled estrogen receptor
(GPER/GPR30) in lung cancer. BMC Cancer. 12:6242012. View Article : Google Scholar : PubMed/NCBI
|
68
|
Pupo M, Bodmer A, Berto M, Maggiolini M,
Dietrich PY and Picard D: A genetic polymorphism repurposes the
G-protein coupled and membrane-associated estrogen receptor GPER to
a transcription factor-like molecule promoting paracrine signaling
between stroma and breast carcinoma cells. Oncotarget.
8:46728–46744. 2017. View Article : Google Scholar
|
69
|
Gonzalez de Valdivia E, Sandén C, Kahn R,
Olde B and Leeb-Lundberg LMF: Human G protein-coupled receptor 30
is N-glycosylated and N-terminal domain asparagine 44 is required
for receptor structure and activity. Biosci Rep.
39:BSR201824362019. View Article : Google Scholar : PubMed/NCBI
|
70
|
Sun R, Wei H, Zhang J, Li A, Zhang W and
Tian ZG: Recombinant human prolactin improves antitumor effects of
murine natural killer cells in vitro and in vivo.
Neuroimmunomodulation. 10:169–176. 2002. View Article : Google Scholar : PubMed/NCBI
|
71
|
Ma L, Li G, Su Y, He Q, Zhang C and Zhang
J: The soluble major histocompatibility complex class I-related
chain A protein reduced NKG2D expression on natural killer and T
cells from patients with prolactinoma and non-secreting pituitary
adenoma. J Clin Neurosci. 17:241–247. 2010. View Article : Google Scholar
|
72
|
Zaga-Clavellina V, Parra-Covarrubias A,
Ramirez-Peredo J, Vega-Sanchez R and Vadillo-Ortega F: The
potential role of prolactin as a modulator of the secretion of
proinflammatory mediators in chorioamniotic membranes in term human
gestation. Am J Obstet Gynecol. 211:48.e1–e6. 2014. View Article : Google Scholar
|
73
|
Shiraishi K, Mimura K, Kua LF, Koh V,
Siang LK, Nakajima S, Fujii H, Shabbir A, Yong WP, So J, et al:
Inhibition of MMP activity can restore NKG2D ligand expression in
gastric cancer, leading to improved NK cell susceptibility. J
Gastroenterol. 51:1101–1111. 2016. View Article : Google Scholar
|