1
|
Kheifets L, Ahlbom A, Crespi CM, Draper G,
Hagihara J, Lowenthal RM, Mezei G, Oksuzyan S, Schüz J, Swanson J,
et al: Pooled analysis of recent studies on magnetic fields and
childhood leukaemia. Br J Cancer. 103:1128–1135. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Saito T, Nitta H, Kubo O, Yamamoto S,
Yamaguchi N, Akiba S, Honda Y, Hagihara J, Isaka K, Ojima T, et al:
Power-frequency magnetic fields and childhood brain tumors: A
case-control study in Japan. J Epidemiol. 20:54–61. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Teepen JC and van Dijck JA: Impact of high
electromagnetic field levels on childhood leukemia incidence. Int J
Cancer. 131:769–778. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Koeman T, Slottje P, Schouten LJ, Peters
S, Huss A, Veldink JH, Kromhout H, van den Brandt PA and Vermeulen
R: Occupational exposure and amyotrophic lateral sclerosis in a
prospective cohort. Occup Environ Med. 74:578–585. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou H, Chen G, Chen C, Yu Y and Xu Z:
Association between extremely low-frequency electromagnetic fields
occupations and amyotrophic lateral sclerosis: A meta-analysis.
PLoS One. 7:e483542012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bunch KJ, Keegan TJ, Swanson J, Vincent TJ
and Murphy MFG: Residential distance at birth from overhead
high-voltage powerlines: Childhood cancer risk in Britain
1962-2008. Br J Cancer. 110:1402–1408. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Turner MC, Benke G, Bowman JD, Figuerola
J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent ME, et
al: Occupational exposure to extremely low-frequency magnetic
fields and brain tumor risks in the INTEROCC study. Cancer
Epidemiol Biomarkers Prev. 23:1863–1872. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Carpenter DO: Extremely low frequency
electromagnetic fields and cancer: How source of funding affects
results. Environ Res. 178:1086882019. View Article : Google Scholar : PubMed/NCBI
|
9
|
International Agency for Research of
Cancer (IARC), . IARC monograph on the evaluation of carcinogenic
risks to humans. Vol 80. Non-Ionizing Radiation, Part 1, Static and
Extremely Low Frequency (ELF) Electric and Magnetic Fields. IARC
Press; Lyon: 2002, PubMed/NCBI
|
10
|
Santini MT, Rainaldi G and Indovina PL:
Cellular effects of extremely low frequency (ELF) electromagnetic
fields. Int J Radiat Biol. 85:294–313. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Saliev T, Begimbetova D, Masoud AR and
Matkarimov B: Biological effects of non-ionizing electromagnetic
fields: Two sides of a coin. Prog Biophys Mol Biol. 141:25–36.
2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Adair RK: Extremely low frequency
electromagnetic fields do not interact directly with DNA.
Bioelectromagnetics. 19:136–138. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Focke F, Schuermann D, Kuster N and Schär
P: DNA fragmentation in human fibroblasts under extremely low
frequency electromagnetic field exposure. Mutat Res. 683:74–83.
2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rageh MM, El-Gebaly RH and El-Bialy NS:
Assessment of genotoxic and cytotoxic hazards in brain and bone
marrow cells of newborn rats exposed to extremely low-frequency
magnetic field. J Biomed Biotechnol. 2012:7160232012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luukkonen J, Liimatainen A, Juutilainen J
and Naarala J: Induction of genomic instability, oxidative
processes, and mitochondrial activity by 50 Hz magnetic fields in
human SH-SY5Y neuroblastoma cells. Mutat Res. 760:33–41. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang Y, Jin X, Yan C, Tian Y, Tang J and
Shen X: Case-only study of interactions between DNA repair genes
(hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency
electromagnetic fields in childhood acute leukemia. Leuk Lymphoma.
49:2344–2350. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Porath D, Bezryadin A, de Vries S and
Dekker C: Direct measurement of electrical transport through DNA
molecules. Nature. 403:635–638. 2000. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Wan C, Fiebig T, Kelley SO, Treadway CR,
Barton JK and Zewail AH: Femtosecond dynamics of DNA-mediated
electron transfer. Proc Natl Acad Sci USA. 96:6014–6019. 1999.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Giese B: Electron transfer through DNA and
peptides. Bioorg Med Chem. 14:6139–6143. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Blank M and Goodman R: DNA is a fractal
antenna in electromagnetic fields. Int J Radiat Biol. 87:409–415.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kastenhuber ER and Lowe SW: Putting p53 in
context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pitolli C, Wang Y, Mancini M, Shi Y,
Melino G and Amelio I: Do mutations turn p53 into an oncogene? Int
J Mol Sci. 20:62412019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lane DP: Cancer. p53, guardian of the
genome. Nature. 358:15–16. 1992. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Williams AB and Schumacher B: p53 in the
DNA-damage-repair process. Cold Spring Harb Perspect Med.
6:a0260702016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lane DP: p53 and human cancers. Br Med
Bull. 50:582–599. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Vieler M and Sanyal S: p53 isoforms and
their implications in cancer. Cancers (Basel). 10:2882018.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Webley K, Bond JA, Jones CJ, Blaydes JP,
Craig A, Hupp T and Wynford-Thomas D: Posttranslational
modifications of p53 in replicative senescence overlapping but
distinct from those induced by DNA damage. Mol Cell Biol.
20:2803–2808. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ishimaru D, Maia LF, Maiolino LM, Quesado
PA, Lopez PC, Almeida FC, Valente AP and Silva JL: Conversion of
wild-type p53 core domain into a conformation that mimics a
hot-spot mutant. J Mol Biol. 333:443–451. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
de Oliveira GAP, Petronilho EC, Pedrote
MM, Marques MA, Vieira TCRG, Cino EA and Silva JL: The status of
p53 oligomeric and aggregation states in cancer. Biomolecules.
10:5482020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ostermeyer AG, Runko E, Winkfield B, Ahn B
and Moll UM: Cytoplasmically sequestered wild-type p53 protein in
neuroblastoma is relocated to the nucleus by a C-terminal peptide.
Proc Natl Acad Sci USA. 93:15190–15194. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wolff A, Technau A, Ihling C,
Technau-Ihling K, Erber R, Bosch FX and Brandner G: Evidence that
wild-type p53 in neuroblastoma cells is in a conformation
refractory to integration into the transcriptional complex.
Oncogene. 20:1307–1317. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Riley T, Sontag E, Chen P and Levine A:
Transcriptional control of human p53-regulated genes. Nat Rev Mol
Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Green DR and Kroemer G: Cytoplasmic
functions of the tumour suppressor p53. Nature. 458:1127–1130.
2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhou X, Hao Q and Lu H: Mutant p53 in
cancer therapy-the barrier or the path. J Mol Cell Biol.
11:293–305. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tomita Y, Marchenko N, Erster S,
Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P and
Moll UM: WT p53, but not tumor-derived mutants, bind to Bcl2 via
the DNA binding domain and induce mitochondrial permeabilization. J
Biol Chem. 281:8600–8606. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
De S, Campbell C, Venkitaraman AR and
Esposito A: Pulsatile MAPK signaling modulates p53 activity to
control cell fate decisions at the G2 checkpoint for DNA damage.
Cell Rep. 30:2083–2093.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Martínez MA, Úbeda A, Moreno J and Trillo
MÁ: Power frequency magnetic fields affect the p38 MAPK-mediated
regulation of NB69 cell proliferation implication of free radicals.
Int J Mol Sci. 17:5102016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Martínez MA, Úbeda A and Trillo MÁ:
Involvement of the EGF receptor in MAPK signaling activation by a
50 Hz magnetic field in human neuroblastoma cells. Cell Physiol
Biochem. 52:893–907. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Martínez MA, Úbeda A and Trillo MÁ: Role
of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic
field in human neuroblastoma cells. Electromagn Biol Med.
40:103–116. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bartek J, Iggo R, Gannon J and Lane DP:
Genetic and immunochemical analysis of mutant p53 in human breast
cancer cell lines. Oncogene. 5:893–899. 1990.PubMed/NCBI
|
42
|
Méplan C, Richard MJ and Hainaut P:
Metalloregulation of the tumor suppressor protein p53: Zinc
mediates the renaturation of p53 after exposure to metal chelators
in vitro and in intact cells. Oncogene. 19:5227–5236. 2000.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sabapathy K and Lane DP: Understanding p53
functions through p53 antibodies. J Mol Cell Biol. 11:317–329.
2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Trillo MA, Martínez MA, Cid MA, Leal J and
Úbeda A: Influence of a 50 Hz magnetic field and of
all-trans-retinol on the proliferation of human cancer cell lines.
Int J Oncol. 40:1405–1413. 2012.PubMed/NCBI
|
45
|
Martínez MA, Úbeda A, Cid MA and Trillo
MÁ: The proliferative response of NB69 human neuroblastoma cells to
a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell
Physiol Biochem. 29:675–686. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pfaffl MW: A new mathematical model for
relative quantification in real-time RT-PCR. Nucleic Acids Res.
29:e452001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Milner J, Cook A and Sheldon M: A new
anti-p53 monoclonal antibody, previously reported to be directed
against the large T antigen of simian virus 40. Oncogene.
1:453–455. 1987.PubMed/NCBI
|
48
|
Gannon JV, Greaves R, Iggo R and Lane DP:
Activating mutations in p53 produce a common conformational effect.
A monoclonal antibody specific for the mutant form. EMBO J.
9:1595–1602. 1990. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nagata Y, Anan T, Yoshida T, Mizukami T,
Taya Y, Fujiwara T, Kato H, Saya H and Nakao M: The stabilization
mechanism of mutant-type p53 by impaired ubiquitination: The loss
of wild-type p53 function and the hsp90 association. Oncogene.
18:6037–6049. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Milner J: Flexibility: The key to p53
function? Trends Biochem Sci. 20:49–51. 1995. View Article : Google Scholar : PubMed/NCBI
|
51
|
Stephen CW and Lane DP: Mutant
conformation of p53. Precise epitope mapping using a filamentous
phage epitope library. J Mol Biol. 225:577–583. 1992. View Article : Google Scholar : PubMed/NCBI
|
52
|
Trillo MÁ, Martínez MA, Cid MA and Úbeda
A: Retinoic acid inhibits the cytoproliferative response to weak
50-Hz magnetic fields in neuroblastoma cells. Oncol Rep.
29:885–894. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ko LJ and Prives C: p53: Puzzle and
paradigm. Genes Dev. 10:1054–1072. 1996. View Article : Google Scholar : PubMed/NCBI
|
54
|
Chen S, Gao R, Yao C, Kobayashi M, Liu SZ,
Yoder MC, Broxmeyer H, Kapur R, Boswell HS, Mayo LD and Liu Y:
Genotoxic stresses promote clonal expansion of hematopoietic stem
cells expressing mutant p53. Leukemia. 32:850–854. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Baharara J, Hosseini N and Farzin TR:
Extremely low frequency electromagnetic field sensitizes
cisplatin-resistant human ovarian adenocarcinoma cells via P53
activation. Cytotechnology. 68:1403–1413. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Tian F, Nakahara T, Yoshida M, Honda N,
Hirose H and Miyakoshi J: Exposure to power frequency magnetic
fields suppresses X-ray-induced apoptosis transiently in
Ku80-deficient xrs5 cells. Biochem Biophys Res Commun. 292:355–361.
2002. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang Y, Liu X, Zhang Y, Wan B, Zhang J, He
W, Hu D, Yang Y, Lai J, He M and Chen C: Exposure to a 50 Hz
magnetic field at 100 µT exerts no DNA damage in cardiomyocytes.
Biol Open. 8:bio0412932019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kesari KK, Juutilainen J, Luukkonen J and
Naarala J: Induction of micronuclei and superoxide production in
neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic
fields. J R Soc Interface. Jan 1–2016.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
59
|
Falone S, Santini S Jr, Cordone V, Di
Emidio G, Tatone C, Cacchio M and Amicarelli F: Extremely
low-frequency magnetic fields and redox-responsive pathways linked
to cancer drug resistance: Insights from co-exposure-based in vitro
studies. Front Public Health. 6:332018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Harris CC and Hollstein M: Clinical
implications of the p53 tumor-suppressor gene. N Engl J Med.
329:1318–1327. 1993. View Article : Google Scholar : PubMed/NCBI
|
61
|
Vijayakumaran R, Tan KH, Miranda PJ, Haupt
S and Haupt Y: Regulation of mutant p53 protein expression. Front
Oncol. 5:2842015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Chen L, Malcolm AJ, Wood KM, Cole M,
Variend S, Cullinane C, Pearson AD, Lunec J and Tweddle DA: p53 is
nuclear and functional in both undifferentiated and differentiated
neuroblastoma. Cell Cycle. 6:2685–2696. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Sasaki M, Nie L and Maki CG: MDM2 binding
induces a conformational change in p53 that is opposed by
heat-shock protein 90 and precedes p53 proteasomal degradation. J
Biol Chem. 282:14626–14634. 2007. View Article : Google Scholar : PubMed/NCBI
|
64
|
Milner J and Watson JV: Addition of fresh
medium induces cell cycle and conformation changes in p53, a tumour
suppressor protein. Oncogene. 5:1683–1690. 1990.PubMed/NCBI
|
65
|
Milner J and Medcalf EA: Cotranslation of
activated mutant p53 with wild type drives the wild-type p53
protein into the mutant conformation. Cell. 65:765–774. 1991.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Do PM, Varanasi L, Fan S, Li C, Kubacka I,
Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, et al:
Mutant p53 cooperates with ETS2 to promote etoposide resistance.
Genes Dev. 26:830–845. 2012. View Article : Google Scholar : PubMed/NCBI
|
67
|
Schmidt V, Nagar R and Martinez LA:
Control of nucleotide metabolism enables mutant p53′s oncogenic
gain-of-function activity. Int J Mol Sci. 18:27592017. View Article : Google Scholar : PubMed/NCBI
|
68
|
Lai H: Exposure to static and
extremely-low frequency electromagnetic fields and cellular free
radicals. Electromagn Biol Med. 38:231–248. 2019. View Article : Google Scholar : PubMed/NCBI
|
69
|
Fuchs SY, Adler V, Pincus MR and Ronai Z:
MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad
Sci USA. 95:10541–10546. 1998. View Article : Google Scholar : PubMed/NCBI
|
70
|
Buschmann T, Potapova O, Bar-Shira A,
Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T,
Alarcon-Vargas D, Pincus MR, et al: Jun NH2-terminal kinase
phosphorylation of p53 on Thr-81 is important for p53 stabilization
and transcriptional activities in response to stress. Mol Cell
Biol. 21:2743–2754. 2001. View Article : Google Scholar : PubMed/NCBI
|
71
|
Ding GR, Nakahara T, Tian FR, Guo Y and
Miyakoshi J: Transient suppression of X-ray-induced apoptosis by
exposure to power frequency magnetic fields in MCF-7 cells. Biochem
Biophys Res Commun. 286:953–957. 2001. View Article : Google Scholar : PubMed/NCBI
|
72
|
Nakahara T, Yaguchi H, Yoshida M and
Miyakoshi J: Effects of exposure of CHO-K1 cells to a 10-T static
magnetic field. Radiology. 224:817–822. 2002. View Article : Google Scholar : PubMed/NCBI
|
73
|
Brisdelli F, Bennato F, Bozzi A, Cinque B,
Mancini F and Iorio R: ELF-MF attenuates quercetin-induced
apoptosis in K562 cells through modulating the expression of Bcl-2
family proteins. Mol Cell Biochem. 397:33–43. 2014. View Article : Google Scholar : PubMed/NCBI
|