Role of circular RNAs in the diagnosis, regulation of drug resistance and prognosis of lung cancer (Review)
- Authors:
- Chengpeng Sang
- Dingyu Rao
- Caixia Wu
- Yao Xia
- Maoyan Si
- Zhixian Tang
-
Affiliations: Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China - Published online on: July 7, 2022 https://doi.org/10.3892/ol.2022.13422
- Article Number: 302
-
Copyright: © Sang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Suster D and Mino-Kenudson M: Molecular pathology of primary non-small cell lung cancer. Arch Med Res. 51:784–798. 2020. View Article : Google Scholar : PubMed/NCBI | |
Woodard G, Jones K and Jablons D: Lung cancer staging and prognosis. Cancer Treat Res. 170:47–75. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Li S, Liu W, Wang Y, Li X, Zhu S, Lei X and Xu S: Circular RNA signature in lung adenocarcinoma: A MiOncoCirc database-based study and literature review. Front Oncol. 10:5233422020. View Article : Google Scholar | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar | |
Wilusz JE: A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 9:e14782018. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Hu Q, Fang S, Zhang X, Hong X, Tao L, Pan J, Jiang M, Bai H, Wu Y, et al: Circulating circTOLLIP serves as a diagnostic biomarker for liquid biopsy in non-small cell lung cancer. Clin Chim Acta. 523:415–422. 2021. View Article : Google Scholar | |
Passiglia F, Bertaglia V, Reale ML, Delcuratolo MD, Tabbò F, Olmetto E, Capelletto E, Bironzo P and Novello S: Major breakthroughs in lung cancer adjuvant treatment: Looking beyond the horizon. Cancer Treat Rev. 101:1023082021. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Ling XA, Wang J, Ding GG and Wang X: Inhibitory effect of Ubenimex combined with fluorouracil on multiple drug resistance and P-glycoprotein expression level in non-small lung cancer. J Cell Mol Med. 24:12840–12847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wang J and Zhao F: CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16:42015. View Article : Google Scholar | |
Liang ZZ, Guo C, Zou MM, Meng P and Zhang TT: circRNA-miRNA-mRNA regulatory network in human lung cancer: An update. Cancer Cell Int. 20:1732020. View Article : Google Scholar | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. | |
Petkovic S and Müller S: RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43:2454–2465. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016. View Article : Google Scholar | |
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI | |
Chen B and Huang S: Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 418:41–50. 2018. View Article : Google Scholar | |
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar | |
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R and Pils D: Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 5:80572015. View Article : Google Scholar : PubMed/NCBI | |
Bing ZX, Zhang JQ, Wang GG, Wang YQ, Wang TG and Li DQ: Silencing of circ_0000517 suppresses proliferation, glycolysis, and glutamine decomposition of non-small cell lung cancer by modulating miR-330-5p/YY1 signal pathway. Kaohsiung J Med Sci. 37:1027–1037. 2021. View Article : Google Scholar | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar | |
Yin H, Shen X, Zhao J, Cao X, He H, Han S, Chen Y, Cui C, Wei Y, Wang Y, et al: Circular RNA CircFAM188B encodes a protein that regulates proliferation and differentiation of chicken skeletal muscle satellite cells. Front Cell Dev Biol. 8:5225882020. View Article : Google Scholar | |
Abdelmohsen K, Kuwano Y, Kim HH and Gorospe M: Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: Implications for cellular senescence. Biol Chem. 389:243–255. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mi Z, Zhongqiang C, Caiyun J, Yanan L, Jianhua W and Liang L: Circular RNA detection methods: A minireview. Talanta. 238((Pt 2)): 1230662022. View Article : Google Scholar | |
Kalanjeri S, Holladay RC and Gildea TR: State-of-the-Art modalities for peripheral lung nodule biopsy. Clin Chest Med. 39:125–138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Chen L, Yang L and Huang Y: Diagnostic and prognostic values of circular RNAs for lung cancer: A meta-analysis. Postgrad Med J. 97:286–293. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Su W and Lan G: Value of circular RNA 0007385 in disease monitoring and prognosis estimation in non-small-cell lung cancer patients. J Clin Lab Anal. 34:e233382020. | |
Fu Y, Huang L, Tang H and Huang R: hsa_circRNA_012515 is highly expressed in NSCLC patients and affects its prognosis. Cancer Manag Res. 12:1877–1886. 2020. View Article : Google Scholar : PubMed/NCBI | |
Geng QQ, Wu QF, Zhang Y, Zhang GJ, Fu JK and Chen NZ: Clinical significance of circ-MTHFD2 in diagnosis, pathological staging and prognosis of NSCLC. Eur Rev Med Pharmacol Sci. 24:9473–9479. 2020. | |
Li S, Sun X, Miao S, Lu T, Wang Y, Liu J and Jiao W: hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma. Thorac Cancer. 9:924–930. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, Han S and Wu G: hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 284:2170–2182. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, Tang XM, Sun F, Lu HM, Deng J, et al: Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol Cancer. 21:252022. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Chen KK, Zhang J, Xiao B, Huang Z, Ju C, Sun J, Zhang F, Lv XB and Huang G: The decade of exosomal long RNA species: An emerging cancer antagonist. Mol Cancer. 17:752018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang H, Wang J, Li B and Wang X: Circular RNA expression profile of lung squamous cell carcinoma: Identification of potential biomarkers and therapeutic targets. Biosci Rep. Apr 30–2020.(Epub ahead of print). | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Xi G, Wang G, Cui D, Zhang B, Wang H, Jiang G, Song J, Xu G and Wang J: Exosomal Circ-MEMO1 promotes the progression and aerobic glycolysis of non-small cell lung cancer through targeting MiR-101-3p/KRAS axis. Front Genet. 11:9622020. View Article : Google Scholar | |
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Cao P and Li J: Plasma circular RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for malignant tumors. J Clin Lab Anal. 35:e240092021. | |
Zhou X, Liu HY, Wang WY, Zhao H and Wang T: Hsa_circ_0102533 serves as a blood-based biomarker for non-small-cell lung cancer diagnosis and regulates apoptosis in vitro. Int J Clin Exp Pathol. 1:4395–4404. 2018. | |
Liu Y, Li C, Liu H and Wang J: Circ_0001821 knockdown suppresses growth, metastasis, and TAX resistance of non-small-cell lung cancer cells by regulating the miR-526b-5p/GRK5 axis. Pharmacol Res Perspect. 9:e008122021. | |
Guo C, Wang H, Jiang H, Qiao L and Wang X: Circ_0011292 enhances paclitaxel resistance in non-small cell lung cancer by regulating miR-379-5p/TRIM65 axis. Cancer Biother Radiopharm. 37:84–95. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zheng R, Chen J and Ning D: CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int. 20:2892020. View Article : Google Scholar | |
Zheng F and Xu R: CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed Pharmacother. 124:1098282020. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Xu T, Zhong S, Wang B, Zhang H, Wang X, Wang P, Li G and Yang S: Circ_0076305 regulates cisplatin resistance of non-small cell lung cancer via positively modulating STAT3 by sponging miR-296-5p. Life Sci. 239:1169842019. View Article : Google Scholar | |
Ma J, Qi G and Li L: A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shao N, Song L and Sun X: Exosomal circ_PIP5K1A regulates the progression of non-small cell lung cancer and cisplatin sensitivity by miR-101/ABCC1 axis. Mol Cell Biochem. 476:2253–2267. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zheng X, Xu B, Chen L, Wang Q, Deng H and Jiang J: Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem Biophys Res Commun. 508:527–535. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Dai Y, Wen C, He S, Shi J, Zhao D, Wu L and Zhou H: circSETD3 contributes to acquired resistance to gefitinib in non-small-cell lung cancer by targeting the miR-520h/ABCG2 pathway. Mol Ther Nucleic Acids. 21:885–899. 2020. View Article : Google Scholar : PubMed/NCBI | |
Joseph NA, Chiou SH, Lung Z, Yang CL, Lin TY, Chang HW, Sun HS, Gupta SK, Yen L, Wang SD and Chow KC: The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J Hematol Oncol. 11:742018. View Article : Google Scholar | |
Liu Y, Zhai R, Hu S and Liu J: Circular RNA circ-RNF121 contributes to cisplatin (DDP) resistance of non-small-cell lung cancer cells by regulating the miR-646/SOX4 axis. Anticancer drugs. 33:e186–e197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Fan R and Xiao H: Circ_ZFR contributes to the paclitaxel resistance and progression of non-small cell lung cancer by upregulating KPNA4 through sponging miR-195-5p. Cancer Cell Int. 21:152021. View Article : Google Scholar | |
Zhu X, Han J, Lan H, Lin Q, Wang Y and Sun X: A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). BMC Cancer. 20:11902020. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Zhao L, Li Q, Xi C, Li Y and Li Z: circ_0007385 served as competing endogenous RNA for miR-519d-3p to suppress malignant behaviors and cisplatin resistance of non-small cell lung cancer cells. Thorac Cancer. 11:2196–2208. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 20:1442021. View Article : Google Scholar : PubMed/NCBI | |
Ge W, Chi H, Tang H, Xu J, Wang J, Cai W and Ma H: Circular RNA CELF1 drives immunosuppression and anti-PD1 therapy resistance in non-small cell lung cancer via the miR-491-5p/EGFR axis. Aging (Albany NY). 13:24560–24579. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jia Y, Wang B, Yang S, Du K, Luo Y, Li Y and Zhu B: Circular RNA CHST15 Sponges miR-155-5p and miR-194-5p to promote the immune escape of lung cancer cells mediated by PD-L1. Front Oncol. 11:5956092021. View Article : Google Scholar | |
Li X, Yang B, Ren H, Xiao T, Zhang L, Li L, Li M, Wang X, Zhou Ha and Zhang W: Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 10:9532019. View Article : Google Scholar : PubMed/NCBI | |
Tong S: Circular RNA SMARCA5 may serve as a tumor suppressor in non-small cell lung cancer. J Clin Lab Anal. 34:e231952020. | |
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S and Guo L: Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ. 27:1709–1727. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Song C and Ren X: Circ_0003998 regulates the progression and docetaxel sensitivity of DTX-resistant non-small cell lung cancer cells by the miR-136-5p/CORO1C axis. Technol Cancer Res Treat. Jan 29–2021.(Epub ahead of print). | |
Wang Y, Li L, Zhang W and Zhang G: Circular RNA circLDB2 functions as a competing endogenous RNA to suppress development and promote cisplatin sensitivity in non-squamous non-small cell lung cancer. Thorac Cancer. 12:1959–1972. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Liu Y, Qiu G, Luo Y, Li X, Meng F, Li N, Xu T, Wang Y, Qin B and Xia S: Emerging roles of circular RNAs in non-small cell lung cancer (Review). Oncol Rep. 45:172021. View Article : Google Scholar : PubMed/NCBI | |
Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M and Riely GJ: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 19:2240–2247. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H and Zeng S: The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 17:291–306. 2021. View Article : Google Scholar | |
Wen C, Xu G, He S, Huang Y, Shi J, Wu L and Zhou H: Screening circular RNAs related to acquired gefitinib resistance in non-small cell lung cancer cell lines. J Cancer. 11:3816–3826. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Teng F, Chang L, Wang J, Liu DL, Cui YS and Li GH: Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging (Albany NY). 13:13264–13286. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar | |
Luo YH, Yang YP, Chien CS, Yarmishyn AA, Ishola AA, Chien Y, Chen YM, Huang TW, Lee KY, Huang WC, et al: Plasma level of circular RNA hsa_circ_0000190 correlates with tumor progression and poor treatment response in advanced lung cancers. Cancers (Basel). 12:17402020. View Article : Google Scholar | |
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus Chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Guo Y, Yan Y, Liu Y, Zhu Y, Kang J, Li F, Sun X, Xing L and Xu Y: A propensity-matched analysis of survival of clinically diagnosed early-stage lung cancer and biopsy-proven early-stage non-small cell lung cancer following stereotactic ablative radiotherapy. Front Oncol. 11:7208472021. View Article : Google Scholar | |
Huang Q: Predictive relevance of ncRNAs in non-small-cell lung cancer patients with radiotherapy: A review of the published data. Biomark Med. 12:1149–1159. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Si J, Yue J and Ma S: The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 147:1275–1286. 2021. View Article : Google Scholar | |
Jin X, Yuan L, Liu B, Kuang Y, Li H, Li L, Zhao X, Li F, Bing Z, Chen W, et al: Integrated analysis of circRNA-miRNA-mRNA network reveals potential prognostic biomarkers for radiotherapies with X-rays and carbon ions in non-small cell lung cancer. Ann Transl Med. 8:13732020. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Li T, Wang Q, et al: Silencing circPVT1 enhances radiosensitivity in non-small cell lung cancer by sponging microRNA-1208. Cancer Biomark. 31:263–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li Y, Feng X and Li D: Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression. Bioengineered. 12:414–425. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Yuan L, Liu B, et al: Integrated analysis of circRNA-miRNA-mRNA network reveals potential prognostic biomarkers for radiotherapies with X-rays and carbon ions in non-small cell lung cancer. Ann Transl Med. 8:13732020. View Article : Google Scholar : PubMed/NCBI | |
Giaj-Levra N, Ricchetti F and Alongi F: What is changing in radiotherapy for the treatment of locally advanced nonsmall cell lung cancer patients? A review. Cancer Invest. 34:80–93. 2016. View Article : Google Scholar | |
Dou Y, Tian W, Wang H and Lv S: Circ_0001944 contributes to glycolysis and tumor growth by upregulating NFAT5 through acting as a decoy for miR-142-5p in non-small cell lung cancer. Cancer Manag Res. 13:3775–3787. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Lv X, Zeng L, et al: CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e. J Exp Clin Cancer Res: CR. 40:1932021. View Article : Google Scholar | |
Wang Y, Li Y, He H and Wang F: Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498. Gene. 720:1440992019. View Article : Google Scholar : PubMed/NCBI | |
Zou Q, Wang T, Li B, Li G, Zhang L, Wang B and Sun S: Overexpression of circ-0067934 is associated with increased cellular proliferation and the prognosis of non-small cell lung cancer. Oncol Lett. 16:5551–5556. 2018. | |
Zhu Z, Wu Q, Zhang M, Tong J, Zhong B and Yuan K: Hsa_circ_0016760 exacerbates the malignant development of non-small cell lung cancer by sponging miR-145-5p/FGF5. Oncol Rep. 45:501–512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Yao W, Lu J, Gong J and Zhang X: Upregulation of circ_001569 predicts poor prognosis and promotes cellproliferation in non-small cell lung cancer by regulating the Wnt/β-catenin pathway. Oncol Lett. 16:453–458. 2018. | |
Wang Y, Wo Y, Lu T, Sun X, Liu A, Dong Y, Du W, Su W, Huang Z and Jiao W: Circ-AASDH functions as the progression of early stage lung adenocarcinoma by targeting miR-140-3p to activate E2F7 expression. Transl Lung Cancer Res. 10:57–70. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Song Z and Gai Y: Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochemical and biophysical research communications. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Min Z, Yan Z, et al: Circ_0000079 decoys the RNA-binding protein FXR1 to interrupt formation of the FXR1/PRCKI complex and decline their mediated cell invasion and drug resistance in NSCLC. Cell transplantation. 29:9636897209610702020. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Zheng W, Bao G, et al: Circular RNA circ_103820 suppresses lung cancer tumorigenesis by sponging miR-200b-3p to release LATS2 and SOCS6. Cell Death Dis. 12:1852021. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wen F and Zhao K: Circular RNA_0001946 is insufficiently expressed in tumor tissues, while its higher expression correlates with less lymph node metastasis, lower TNM stage, and improved prognosis in NSCLC patients. J Clin Lab Anal. 35:e236252021. View Article : Google Scholar | |
Zhang K, Hu H, Xu J, Qiu L, Chen H, Jiang X and Jiang Y: Circ_0001421 facilitates glycolysis and lung cancer development by regulating miR-4677-3p/CDCA3. Diagn Pathol. 15:1332020. View Article : Google Scholar | |
An J, Shi H, Zhang N and Song S: Elevation of circular RNA circ_0003645 forecasts unfavorable prognosis and facilitates cell progression via miR-1179/TMEM14A pathway in non-small cell lung cancer. Biochem Biophys Res Commun. 511:921–925. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Liu YR, Zhou JH, Li W, Guo HH and Ma HP: Enhanced expression of circular RNA hsa_circ_000984 promotes cells proliferation and metastasis in non-small cell lung cancer by modulating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 23:3366–3374. 2019. | |
Liu T, Song Z and Gai Y: Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochem Biophys Res Commun. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Hao L, Zheng X and Li Z: Circular RNA circ_0020123 promotes non-small cell lung cancer progression by acting as a ceRNA for miR-488-3p to regulate ADAM9 expression. Biochem Biophys Res Commun. 515:303–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Wang Z, Hu Z, Jiao X and Yao Y: Circular RNA circ_0074027 indicates a poor prognosis for NSCLC patients and modulates cell proliferation, apoptosis, and invasion via miR-185-3p mediated BRD4/MADD activation. J Cell Biochem. 121:2632–2642. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang SJ, Ma J, Wu JC, Hao ZZ, Zhang YA and Zhang YJ: Circular RNA circCRIM1 suppresses lung adenocarcinoma cell migration, invasion, EMT, and glycolysis through regulating miR-125b-5p/BTG2 axis. Eur Rev Med Pharmacol Sci. 25:33992021. | |
Qi Y, Zhang B, Wang J and Yao M: Upregulation of circular RNA hsa_circ_0007534 predicts unfavorable prognosis for NSCLC and exerts oncogenic properties in vitro and in vivo. Gene. 676:79–85. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X, Guan G and Dong X: Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochem Biophys Res Commun. 503:2089–2094. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Lv X, Zeng L, Li W, Zhong Y, Yuan J, Deng S, Liu B, Yuan B, Chen Y, et al: CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e. J Exp Clin Cancer Res. 40:1932021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yao H, Li Y, Yang L, Zhang L, Chen J, Wang Y and Li X: Circular RNA TADA2A promotes proliferation and migration via modulating of miR-638/KIAA0101 signal in non-small cell lung cancer. Oncol Rep. 46:2012021. View Article : Google Scholar : PubMed/NCBI | |
Song HM, Meng D, Wang JP and Zhang XY: circRNA hsa_circ_0005909 predicts poor prognosis and promotes the growth, metastasis, and drug resistance of non-small-cell lung cancer via the miRNA-338-3p/SOX4 pathway. Dis Markers. 2021:83885122021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang J, Yang X, Hu C, Chu T, Zhong R, Shen Y, Hu F, Pan F, Xu J, et al: hsa_circ_0003222 accelerates stemness and progression of non-small cell lung cancer by sponging miR-527. Cell Death Dis. 12:8072021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ao Y, Yu W, Zhang Y and Wang J: Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acid. 27:50–72. 2022. View Article : Google Scholar | |
Jian F, Yangyang R, Wei X, Jiadan X, Na L, Peng Y, Maohong B, Guoping N and Zhaoji P: The prognostic and predictive significance of circRNA CDR1as in tumor progression. Front Oncol. 10:5499822021. View Article : Google Scholar | |
Wang J, Chu Y, Li J and Zeng F, Wu M, Wang T, Sun L, Chen Q, Wang P, Zhang X and Zeng F: Development of a prediction model with serum tumor markers to assess tumor metastasis in lung cancer. Cancer Med. 9:5436–5445. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Yan Y, Chen X, Qian L, Zeng S, Li Z, Dai S, Gong Z and Xu Z: The roles of plant-derived triptolide on non-small cell lung cancer. Oncol Res. 27:849–858. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Xu Z, Hu X, Qian L, Li Z, Zhou Y, Dai S, Zeng S and Gong Z: SNCA is a functionally low-expressed gene in lung adenocarcinoma. Genes (Basel). 9:162018. View Article : Google Scholar | |
Wei J, Xu Z, Chen X, Wang X, Zeng S, Qian L, Yang X, Ou C, Lin W, Gong Z and Yan Y: Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep. 21:360–370. 2020.PubMed/NCBI |