Emerging role of circRNAs in cancer under hypoxia (Review)
- Authors:
- Qun Lai
- Wenqiang Li
- Hongping Wang
- Siran Xu
- Zhiping Deng
-
Affiliations: Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China, Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan 643000, P.R. China, Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China - Published online on: September 5, 2022 https://doi.org/10.3892/ol.2022.13492
- Article Number: 372
-
Copyright: © Lai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
International Agency for Research on Cancer, . Latest global cancer data, 2020. GLOBOCAN database. Available from:. https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa/July 1–2021 | |
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, et al: Streptococcal bacterial components in cancer therapy. Cancer Gene Ther. 29:141–155. 2022. View Article : Google Scholar : PubMed/NCBI | |
Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: MEK in cancer and cancer therapy. Pharmacol Ther. 141:160–171. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rajappa A, Banerjee S, Sharma V and Khandelia P: Circular RNAs: Emerging role in cancer diagnostics and therapeutics. Front Mol Biosci. 7:5779382020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P and Wu M: CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie R, Zhang Y, Zhang J, Li J and Zhou X: The role of circular RNAs in immune-related diseases. Front Immunol. 11:5452020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Shen Y, Li Z, Ruan Y, Li T, Xiao B and Sun W: The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers. J Clin Lab Anal. 34:e230492020.PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hentze MW and Preiss T: Circular RNAs: Splicing's enigma variations. EMBO J. 32:923–925. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bramham CR and Wells DG: Dendritic mRNA: Transport, translation and function. Nat Rev Neurosci. 8:776–789. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z and Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6:e10012332010. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Guo S, Li W and Yu P: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 5:124532015. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Wang C, Chen J, Wei D, Yu F and Sun J: circAGFG1 sponges miR-28-5p to promote non-small-cell lung cancer progression through modulating HIF-1α level. Open Med (Wars). 16:703–717. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu H, Zeng Q, Xu P, Liu M and Yang N: Circular RNA circ-MAT2B facilitates glycolysis and growth of gastric cancer through regulating the miR-515-5p/HIF-1α axis. Cancer Cell Int. 20:1712020. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Yang W, Jiang N, Shi J, Chen L, Zhong G, Bi J, Dong W, Wang Q, Wang C and Lin T: Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int J Biol Sci. 15:441–452. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prabhakar NR and Semenza GL: Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Albadari N, Deng S and Li W: The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murugesan T, Rajajeyabalachandran G, Kumar S, Nagaraju S and Jegatheesan SK: Targeting HIF-2α as therapy for advanced cancers. Drug Discov Today. 23:1444–1451. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heikkilä M, Pasanen A, Kivirikko KI and Myllyharju J: Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci. 68:3885–3901. 2011. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 9:47–71. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wenger RH, Stiehl DP and Camenisch G: Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005:re122005. View Article : Google Scholar : PubMed/NCBI | |
Brown JM: Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol. 52:650–656. 1979. View Article : Google Scholar : PubMed/NCBI | |
Höckel M and Vaupel P: Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 93:266–276. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S and Moreno-Sánchez R: HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 9:1084–1101. 2009. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 32:4057–4063. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F and Rüegg C: Endothelial cells as key determinants of the tumor microenvironment: Interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol. 30:529–545. 2010. View Article : Google Scholar : PubMed/NCBI | |
Johnson BF, Clay TM, Hobeika AC, Lyerly HK and Morse MA: Vascular endothelial growth factor and immunosuppression in cancer: Current knowledge and potential for new therapy. Expert Opin Biol Ther. 7:449–460. 2007. View Article : Google Scholar : PubMed/NCBI | |
Woo SR, Corrales L and Gajewski TF: Innate immune recognition of cancer. Annu Rev Immunol. 33:445–474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE and Isaka K: Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology. 145:4113–418. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY and Deng LL: Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol. 43:113–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC and Seagroves TN: Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res. 14:R62012. View Article : Google Scholar : PubMed/NCBI | |
Calvani M, Comito G, Giannoni E and Chiarugi P: Time-dependent stabilization of hypoxia inducible factor-1α by different intracellular sources of reactive oxygen species. PLoS One. 7:e383882012. View Article : Google Scholar : PubMed/NCBI | |
Seebacher NA, Richardson DR and Jansson PJ: Glucose modulation induces reactive oxygen species and increases P-glycoprotein-mediated multidrug resistance to chemotherapeutics. Br J Pharmacol. 172:2557–2572. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Qiu J, Wang S, Yang Y, Guo M, Wang D, Luo Q and Xu L: Comprehensive circular RNA profiling identifies CircFAM120A as a new biomarker of hypoxic lung adenocarcinoma. Ann Transl Med. 7:4422019. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Xu Y, Hu J, Zhang S, Li M and Xu L: A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun. 521:395–401. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Li J, Peng B, Cai P, Zhao B, Chen Y and Zhu H: CircASXL1 knockdown restrains hypoxia-induced DDP resistance and NSCLC progression by sponging miR-206. Cancer Manag Res. 13:5077–5089. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu KH, Tsai YT, Chin SY, Lee WR, Chen YC and Shen SC: Hypoxia stimulates the epithelial-to-mesenchymal transition in lung cancer cells through accumulation of nuclear β-catenin. Anticancer Res. 38:6299–6308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Luo Q, Song Y, Yang F, Wang Y, Jin M and Zhang D: Circular RNA circPIP5K1A promotes non-small cell lung cancer proliferation and metastasis through miR-600/HIF-1α regulation. J Cell Biochem. 120:19019–19030. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thompson B, Hohl SD, Molina Y, Paskett ED, Fisher JL, Baltic RD and Washington CM: Breast cancer disparities among women in underserved communities in the USA. Curr Breast Cancer Rep. 10:131–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Liu Z, Tan L, Su AN, Jiang WG and Gong C: HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res. 37:4337–4343. 2017.PubMed/NCBI | |
Wang J, Huang K, Shi L, Zhang Q and Zhang S: CircPVT1 Promoted the progression of breast cancer by regulating MiR-29a-3p-mediated AGR2-HIF-1α pathway. Cancer Manag Res. 12:11477–11490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Darbeheshti F, Mahdiannasser M, Noroozi Z, Firoozi Z, Mansoori B, Daraei A, Bastami M, Nariman-Saleh-Fam Z, Valipour E and Mansoori Y: Circular RNA-associated ceRNA network involved in HIF-1 signalling in triple-negative breast cancer: circ_0047303 as a potential key regulator. J Cell Mol Med. 25:11322–11332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singh D, Arora R, Kaur P, Singh B, Mannan R and Arora S: Overexpression of hypoxia-inducible factor and metabolic pathways: Possible targets of cancer. Cell Biosci. 7:622017. View Article : Google Scholar : PubMed/NCBI | |
Xing X, Liang D, Huang Y, Zeng Y, Han X, Liu X and Liu J: The application of proteomics in different aspects of hepatocellular carcinoma research. J Proteomics. 145:70–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhai Z, Fu Q, Liu C, Zhang X, Jia P, Xia P, Liu P, Liao S, Qin T and Zhang H: Emerging roles of hsa-circ-0046600 targeting the miR-640/HIF-1α signalling pathway in the progression of HCC. Onco Targets Ther. 12:9291–9302. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tu Q, You X, He J, Hu X, Xie C and Xu G: Circular RNA Circ-0003006 promotes hepatocellular carcinoma proliferation and metastasis through sponging miR-542-3p and regulating HIF-1A. Cancer Manag Res. 13:7859–7870. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Du B, Zhan Y, Wang K, Wang X, Chen B, Wei X and Xiao J: Antitumor effects of circ-EPHB4 in hepatocellular carcinoma via inhibition of HIF-1α. Mol Carcinog. 58:875–886. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T and Zhao Y: The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. 77:305–321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu A and Xu J: Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin Transl Oncol. 23:1905–1914. 2021. View Article : Google Scholar : PubMed/NCBI | |
Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: Role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Hu J, Sun W, Duan X and Chen X: Hypoxia-mediated immune evasion of pancreatic carcinoma cells. Mol Med Rep. 11:3666–3672. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ou ZL, Luo Z, Wei W, Liang S, Gao TL and Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI | |
Harada S and Morlote D: Molecular pathology of colorectal cancer. Adv Anat Pathol. 27:20–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad OA, et al: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 177:1035–1049.e19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen LY, Wang L, Ren YX, Pang Z, Liu Y, Sun XD, Tu J, Zhi Z, Qin Y, Sun LN and Li JM: The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer. 19:1642020. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Xie W, Huang HL, Huang RQ, Tian C, Zhu HB, Dai YH and Li ZY: circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging (Albany NY). 12:13338–13353. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qian W, Huang T and Feng W: Circular RNA HIPK3 promotes EMT of cervical cancer through sponging miR-338-3p to Up-regulate HIF-1α. Cancer Manag Res. 12:177–187. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Mao M, Jiang J, Zhu D and Li P: Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. Onco Targets Ther. 12:3869–3879. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su H, Zou D, Sun Y and Dai Y: Hypoxia-associated circDENND2A promotes glioma aggressiveness by sponging miR-625-5p. Cell Mol Biol Lett. 24:242019. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA: Ovarian cancer. Hematol Oncol Clin North Am. 32:13–14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bleeker FE, Molenaar RJ and Leenstra S: Recent advances in the molecular understanding of glioblastoma. J Neurooncol. 108:11–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Ye D: Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets. 10:782–796. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Liu Y, Gao R, Xiu Z and Sun T: Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cell Signal. 60:122–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li K, Guo J, Wu Y, Jin D, Jiang H, Liu C and Qin C: Suppression of YAP by DDP disrupts colontumor progression. Oncol Rep. 39:2114–2126. 2018.PubMed/NCBI | |
Xu Y, Jiang T, Wu C and Zhang Y: CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol Lett. 42:1123–1135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Zhao Y, Chen Q, Zhu S, Niu Y, Ye Z, Hu P, Chen D, Xu P, Chen J, et al: Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 40:5505–5517. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y and Li J: Circular RNAs: Regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 7:3106–3117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P and Mayer A: Hypoxia in tumors: Pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol. 812:19–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345:12506842014. View Article : Google Scholar : PubMed/NCBI | |
Balamurugan K: HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 138:1058–1066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, Li MC and Lin YH: Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol. 14:1034–1039. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lavecchia A, Di Giovanni C and Cerchia C: Novel inhibitors of signal transducer and activator of transcription 3 signaling pathway: An update on the recent patent literature. Expert Opin Ther Pat. 24:383–400. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brown JM: Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther. 1:453–458. 2002. View Article : Google Scholar : PubMed/NCBI | |
Doktorova H, Hrabeta J, Khalil MA and Eckschlager T: Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 159:166–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wigerup C, Påhlman S and Bexell D: Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI |