Effect of the PARP inhibitor veliparib on germ cell tumor cell lines
- Authors:
- Silvia Schmidtova
- Natalia Udvorkova
- Zuzana Cierna
- Samuel Horak
- Katarina Kalavska
- Michal Chovanec
- Lucia Rojikova
- Miriam Vulevova
- Lucia Kucerova
- Michal Mego
-
Affiliations: Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia, Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia, Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia, Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia - Published online on: September 21, 2022 https://doi.org/10.3892/ol.2022.13512
- Article Number: 392
-
Copyright: © Schmidtova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Oosterhuis JW and Looijenga LHJ: Human germ cell tumours from a developmental perspective. Nat Rev Cancer. 19:522–537. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Chen Y, Zhang D, Pan J, Xie Z, Xu C, Li S, Zhang X, Gao Y, Hou J, et al: Estimates of over-time trends in incidence and mortality of testicular cancer from 1990 to 2030. Transl Androl Urol. 9:182–195. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alsdorf W, Seidel C, Bokemeyer C and Oing C: Current pharmacotherapy for testicular germ cell cancer. Expert Opin Pharmacother. 20:837–850. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feldman DR, Patil S, Trinos MJ, Carousso M, Ginsberg MS, Sheinfeld J, Bajorin DF, Bosl GJ and Motzer RJ: Progression-free and overall survival in patients with relapsed/refractory germ cell tumors treated with single-agent chemotherapy: Endpoints for clinical trial design. Cancer. 118:981–986. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmidtova S, Kalavska K and Kucerova L: Molecular mechanisms of cisplatin chemoresistance and its circumventing in testicular germ cell tumors. Curr Oncol Rep. 20:882018. View Article : Google Scholar : PubMed/NCBI | |
Lobo J, Jeronimo C and Henrique R: Cisplatin resistance in testicular germ cell tumors: Current challenges from various perspectives. Cancers (Basel). 12:16012020. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Fazal Z, Freemantle SJ and Spinella MJ: Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors. Cancer Drug Resist. 2:580–594. 2019.PubMed/NCBI | |
Al-Obaidy KI, Chovanec M and Cheng L: Molecular characteristics of testicular germ cell tumors: Pathogenesis and mechanisms of therapy resistance. Expert Rev Anticancer Ther. 20:75–79. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mego M, Cierna Z, Svetlovska D, Macak D, Machalekova K, Miskovska V, Chovanec M, Usakova V, Obertova J, Babal P and Mardiak J: PARP expression in germ cell tumours. J Clin Pathol. 66:607–612. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L and Maia de Oliveira T: PARP power: A structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling. Int J Mol Sci. 22:51122021. View Article : Google Scholar : PubMed/NCBI | |
Hottiger MO, Boothby M, Koch-Nolte F, Lüscher B, Martin NM, Plummer R, Wang ZQ and Ziegler M: Progress in the function and regulation of ADP-ribosylation. Sci Signal. 4:mr52011.PubMed/NCBI | |
Zhu G and Lippard SJ: Photoaffinity labeling reveals nuclear proteins that uniquely recognize cisplatin-DNA interstrand cross-links. Biochemistry. 48:4916–4925. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, et al: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 361:123–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, et al: Poly(ADP)-ribose polymerase inhibition: Frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 28:2512–2519. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dockery LE, Gunderson CC and Moore KN: Rucaparib: The past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 10:3029–3037. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, Okamoto A, Moore KN, Efrat Ben-Baruch N, Werner TL, et al: Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 381:2403–2415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rose M, Burgess JT, O'Byrne K, Richard DJ and Bolderson E: PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 8:5646012020. View Article : Google Scholar : PubMed/NCBI | |
Sakogawa K, Aoki Y, Misumi K, Hamai Y, Emi M, Hihara J, Shi L, Kono K, Horikoshi Y, Sun J, et al: Involvement of homologous recombination in the synergism between cisplatin and poly (ADP-ribose) polymerase inhibition. Cancer Sci. 104:1593–1599. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Zhang Z, Borczuk A, Powell CA, Balajee AS, Lieberman HB and Halmos B: PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis. 34:739–749. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, et al: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USa. 105:17079–17084. 2008. View Article : Google Scholar : PubMed/NCBI | |
Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PW, Holstege H, Liu X, van Drunen E, Beverloo HB, et al: Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res. 14:3916–3925. 2008. View Article : Google Scholar : PubMed/NCBI | |
Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, Curtin N, Boddy A, McHugh P, Newell D, et al: Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. 14:7917–7923. 2008. View Article : Google Scholar : PubMed/NCBI | |
Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, Mulligan E, Curtin N, Wang D, Dewji R, et al: A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol. 71:1191–1199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bell-McGuinn KM, Brady WE, Schilder RJ, Fracasso PM, Moore KN, Walker JL, Duska LR, Mathews CA, Chen A, Shepherd SP, et al: A phase I study of continuous veliparib in combination with IV carboplatin/paclitaxel or IV/IP paclitaxel/cisplatin and bevacizumab in newly diagnosed patients with previously untreated epithelial ovarian, fallopian tube, or primary peritoneal cancer: An NRG oncology/gynecologic oncology group study. J Clin Oncol. 33 (Suppl 15):S55072015. View Article : Google Scholar | |
Landrum LM, Brady WE, Armstrong DK, Moore KN, DiSilvestro PA, O'Malley DM, Tenney ME, Rose PG and Fracasso PM: A phase I trial of pegylated liposomal doxorubicin (PLD), carboplatin, bevacizumab and veliparib in recurrent, platinum-sensitive ovarian, primary peritoneal, and fallopian tube cancer: An NRG oncology/gynecologic oncology group study. Gynecol Oncol. 140:204–209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nishio S, Takekuma M, Takeuchi S, Kawano K, Tsuda N, Tasaki K, Takahashi N, Abe M, Tanaka A, Nagasawa T, et al: Phase 1 study of veliparib with carboplatin and weekly paclitaxel in Japanese patients with newly diagnosed ovarian cancer. Cancer Sci. 108:2213–2220. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gray HJ, Bell-McGuinn K, Fleming GF, Cristea M, Xiong H, Sullivan D, Luo Y, McKee MD, Munasinghe W and Martin LP: Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced ovarian cancer and other solid malignancies. Gynecol Oncol. 148:507–514. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilson RH, Evans TJ, Middleton MR, Molife LR, Spicer J, Dieras V, Roxburgh P, Giordano H, Jaw-Tsai S, Goble S and Plummer R: A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer. 116:884–892. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mego M, Svetlovska D, Reckova M, Angelis D, Kalavska K, Obertova J, Palacka P, Rejlekova K, Sycova-Mila Z, Chovanec M and Mardiak J: Gemcitabine, carboplatin and veliparib in multiple relapsed/refractory germ cell tumours: The GCT-SK-004 phase II trial. Invest New Drugs. 39:1664–1670. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schmidtova S, Kalavska K, Gercakova K, Cierna Z, Miklikova S, Smolkova B, Buocikova V, Miskovska V, Durinikova E, Burikova M, et al: Disulfiram overcomes cisplatin resistance in human embryonal carcinoma cells. Cancers (Basel). 11:12242019. View Article : Google Scholar : PubMed/NCBI | |
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, et al: Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int. 20:3642020. View Article : Google Scholar : PubMed/NCBI | |
Schmidtova S, Kalavska K, Liskova V, Plava J, Miklikova S, Kucerova L, Matuskova M, Rojikova L, Cierna Z, Rogozea A, et al: Targeting of deregulated Wnt/β-catenin signaling by PRI-724 and LGK974 inhibitors in germ cell tumor cell lines. Int J Mol Sci. 22:42632021. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pfaffl MW, Horgan GW and Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30:e362002. View Article : Google Scholar : PubMed/NCBI | |
Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stehlik P, Paulikova H and Hunakova L: Synthetic isothiocyanate indole-3-ethyl isothiocyanate (homoITC) enhances sensitivity of human ovarian carcinoma cell lines A2780 and A2780/CP to cisplatin. Neoplasma. 57:473–481. 2010. View Article : Google Scholar : PubMed/NCBI | |
Klauschen F, von Winterfeld M, Stenzinger A, Sinn BV, Budczies J, Kamphues C, Bahra M, Wittschieber D, Weichert W, Striefler J, et al: High nuclear poly-(ADP-ribose)-polymerase expression is prognostic of improved survival in pancreatic cancer. Histopathology. 61:409–416. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Gelot C, Pantelidou C, Li A, Yücel H, Davis RE, Färkkilä A, Kochupurakkal B, Syed A, Shapiro GI, et al: A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat Cancer. 2:598–610. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zatreanu D, Robinson HMR, Alkhatib O, Boursier M, Finch H, Geo L, Grande D, Grinkevich V, Heald RA, Langdon S, et al: Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 12:36362021. View Article : Google Scholar : PubMed/NCBI | |
Ray Chaudhuri A and Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H and Iliakis G: PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34:6170–6182. 2006. View Article : Google Scholar : PubMed/NCBI | |
Langelier MF, Riccio AA and Pascal JM: PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42:7762–7775. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ménissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Amé JC, Dierich A, LeMeur M, et al: Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22:2255–2263. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cavallo F, Graziani G, Antinozzi C, Feldman DR, Houldsworth J, Bosl GJ, Chaganti RS, Moynahan ME, Jasin M and Barchi M: Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One. 7:e515632012. View Article : Google Scholar : PubMed/NCBI | |
Ogino H, Nakayama R, Sakamoto H, Yoshida T, Sugimura T and Masutani M: Analysis of poly(ADP-ribose) polymerase-1 (PARP1) gene alteration in human germ cell tumor cell lines. Cancer Genet Cytogenet. 197:8–15. 2010. View Article : Google Scholar : PubMed/NCBI | |
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S and Pommier Y: Trapping of PARP1 and PARP2 by CLinical PARP inhibitors. Cancer Res. 72:5588–5599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A and Reis-Filho JS: Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle. 10:1192–1199. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS, et al: Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 379:2495–2505. 2018. View Article : Google Scholar : PubMed/NCBI | |
Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, et al: Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 381:317–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, Masuda N, Delaloge S, Li W, Armstrong A, et al: OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 30:558–566. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–2102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Abida W, Campbell D, Patnaik A, Shapiro JD, Sautois B, Vogelzang NJ, Voog EG, Bryce AH, McDermott R, Ricci F, et al: Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: Analysis from the phase II TRITON2 study. Clin Cancer Res. 26:2487–2496. 2020. View Article : Google Scholar : PubMed/NCBI | |
George RR, Thomas R, Davice A and Mathew MS: Veliparib for the treatment of solid malignancies. J Oncol Pharm Pract. 28:924–934. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rodler ET, Kurland BF, Griffin M, Gralow JR, Porter P, Yeh RF, Gadi VK, Guenthoer J, Beumer JH, Korde L, et al: Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res. 22:2855–2864. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diéras V, Han HS, Kaufman B, Wildiers H, Friedlander M, Ayoub JP, Puhalla SL, Bondarenko I, Campone M, Jakobsen EH, et al: Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 21:1269–1282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Byers LA, Bentsion D, Gans S, Penkov K, Son C, Sibille A, Owonikoko TK, Groen HJM, Gay CM, Fujimoto J, et al: Veliparib in combination with carboplatin and etoposide in patients with treatment-Naïve extensive-stage small cell lung cancer: A phase 2 randomized study. Clin Cancer Res. 27:3884–3895. 2021. View Article : Google Scholar : PubMed/NCBI | |
Clarke JM, Patel JD, Robert F, Kio EA, Thara E, Ross Camidge D, Dunbar M, Nuthalapati S, Dinh MH and Bach BA: Veliparib and nivolumab in combination with platinum doublet chemotherapy in patients with metastatic or advanced non-small cell lung cancer: A phase 1 dose escalation study. Lung Cancer. 161:180–188. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lobo J, Constancio V, Guimaraes-Teixeira C, Leite-Silva P, Miranda-Gonçalves V, Sequeira JP, Pistoni L, Guimarães R, Cantante M, Braga I, et al: Promoter methylation of DNA homologous recombination genes is predictive of the responsiveness to PARP inhibitor treatment in testicular germ cell tumors. Mol Oncol. 15:846–865. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caggiano C, Cavallo F, Giannattasio T, Cappelletti G, Rossi P, Grimaldi P, Feldman DR, Jasin M and Barchi M: Testicular germ cell tumors acquire cisplatin resistance by rebalancing the usage of DNA repair pathways. Cancers (Basel). 13:7872021. View Article : Google Scholar : PubMed/NCBI | |
De Giorgi U, Schepisi G, Gurioli G, Pisano C, Basso U, Lolli C, Petracci E, Casadei C, Cecere SC, Attademo L, et al: Olaparib as salvage treatment for advanced germ cell tumors after chemotherapy failure: Results of the open-label, single-arm, IGG-02 phase II trial. J Clin Oncol. 38 (Suppl 15):S50582020. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE and Ashworth A: BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Resh. 19:5003–5015. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Meng XY, Deng NN, Meng C, Li LH, He ZK, Wang XY, Song ZY and Cui RJ: Effect and safety of therapeutic regimens for patients with germline BRCA mutation-associated breast cancer: A network meta-analysis. Front Oncol. 11:7187612021. View Article : Google Scholar : PubMed/NCBI | |
Kim DS, Camacho CV and Kraus WL: Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp Mol Med. 53:42–51. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dias MP, Moser SC, Ganesan S and Jonkers J: Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 18:773–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS and Ashworth A: Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 451:1111–1115. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ter Brugge P, Kristel P, van der Burg E, Boon U, de Maaker M, Lips E, Mulder L, de Ruiter J, Moutinho C, Gevensleben H, et al: Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J Natl Cancer Inst. 108:2016. View Article : Google Scholar : PubMed/NCBI | |
Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L, Huang JW, Madubata C, Anand R, Levy B, Rabadan R, et al: Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol Cell. 68:414–430.e8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rondinelli B, Gogola E, Yücel H, Duarte AA, van de Ven M, van der Sluijs R, Konstantinopoulos PA, Jonkers J, Ceccaldi R, Rottenberg S and D'Andrea AD: EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol. 19:1371–1378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jaspers JE, Sol W, Kersbergen A, Schlicker A, Guyader C, Xu G, Wessels L, Borst P, Jonkers J and Rottenberg S: BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Res. 75:732–741. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S, et al: Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 35:950–952. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bajrami I, Frankum JR, Konde A, Miller RE, Rehman FL, Brough R, Campbell J, Sims D, Rafiq R, Hooper S, et al: Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 74:287–297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Yang ES, Jiang G, Nowsheen S, Wang H, Wang T, Wang Y, Billheimer D, Chakravarthy AB, Brown M, et al: p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res. 71:5546–5557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang ES, Nowsheen S, Rahman MA, Cook RS and Xia F: Targeting BRCA1 localization to augment breast tumor sensitivity to poly(ADP-Ribose) polymerase inhibition. Cancer Res. 72:5547–5555. 2012. View Article : Google Scholar : PubMed/NCBI | |
LoRusso P, Pilat MJP, Santa-Maria CA, Connolly, Roesch EE, Afghahi A, Han HS, Nanda R, Wulf GM, Assad H, et al: Trial in progress: A phase II open-label, randomized study of PARP inhibition (olaparib) either alone or in combination with anti-PD-L1 therapy (atezolizumab) in homologous DNA repair (HDR) deficient, locally advanced or metastatic non-HER2-positive breast cancer. J Clin Oncol. 38 (Suppl 15):TPS11022020. View Article : Google Scholar | |
Moore KN, Chambers SK, Hamilton EP, Chen LM, Oza AM, Ghamande SA, Konecny GE, Plaxe SC, Spitz DL, Geenen JJJ, et al: Adavosertib with chemotherapy in patients with primary platinum-resistant ovarian, fallopian tube, or peritoneal cancer: An open-label, four-arm, phase II study. Clin Cancer Res. 28:36–44. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tutt A, Stephens C, Frewer P, Pierce A, Rhee J, Edgington S, Ottesen L, Ah-See ML, Hollingsworth SJ and Dean E: VIOLETTE: A randomized phase II study to assess the DNA damage response inhibitors AZD6738 or AZD1775 in combination with olaparib (Ola) versus Ola monotherapy in patients (pts) with metastatic, triple-negative breast cancer (TNBC). J Clin Oncol. 37 (Suppl 15):TPS11122019. View Article : Google Scholar | |
Choi YE, Battelli C, Watson J, Liu J, Curtis J, Morse AN, Matulonis UA, Chowdhury D and Konstantinopoulos PA: Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget. 5:2678–2687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim H, George E, Ragland R, Rafail S, Zhang R, Krepler C, Morgan M, Herlyn M, Brown E and Simpkins F: Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin Cancer Res. 23:3097–3108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murai J, Feng Y, Yu GK, Ru Y, Tang SW, Shen Y and Pommier Y: Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget. 7:76534–76550. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y, Bellani M, Zou Y, Singh ZN, Duong VH, et al: Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents-a potential therapy for cancer. Cancer Cell. 30:637–650. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pulliam N, Fang F, Ozes AR, Tang J, Adewuyi A, Keer H, Lyons J, Baylin SB, Matei D, Nakshatri H, et al: An effective epigenetic-PARP inhibitor combination therapy for breast and ovarian cancers independent of BRCA mutations. Clin Cancer Res. 24:3163–3175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, et al: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 23:3711–3720. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mehta AK, Cheney EM, Hartl CA, Pantelidou C, Oliwa M, Castrillon JA, Lin JR, Hurst KE, de Oliveira Taveira M, Johnson NT, et al: Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer. 2:66–82. 2021. View Article : Google Scholar : PubMed/NCBI |