1
|
Vigneswaran N and Williams MD:
Epidemiologic trends in head and neck cancer and aids in diagnosis.
Oral Maxillofac Surg Clin North Am. 26:123–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Argiris A, Karamouzis MV, Raben D and
Ferris RL: Head and neck cancer. Lancet. 371:1695–1709. 2008.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mifsud M, Eskander A, Irish J, Gullane P,
Gilbert R, Brown D, de Almeida JR, Urbach DR and Goldstein DP:
Evolving trends in head and neck cancer epidemiology: Ontario,
Canada 1993–2010. Head Neck. 39:1770–1778. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dok R and Nuyts S: HPV positive head and
neck cancers: Molecular pathogenesis and evolving treatment
strategies. Cancers (Basel). 8:412016. View Article : Google Scholar : PubMed/NCBI
|
5
|
World Health Organization (WHO), . World
Cancer Report 2014. WHO; Geneva: pp. 422–435. 2014
|
6
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Republic of Turkey Ministry of Health,
General Directorate of Public Health, . Cancer Statistics.
https://hsgm.saglik.gov.tr/depo/birimler/kanser-db/istatistik/2014-RAPOR._uzuuun.pdfSeptember
3–2019
|
8
|
Leoncini E, Vukovic V, Cadoni G, Pastorino
R, Arzani D, Bosetti C, Canova C, Garavello W, La Vecchia C, Maule
M, et al: Clinical features and prognostic factors in patients with
head and neck cancer: Results from a multicentric study. Cancer
Epidemiol. 39:367–374. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cohen EE, LaMonte SJ, Erb NL, Beckman KL,
Sadeghi N, Hutcheson KA, Stubblefield MD, Abbott DM, Fisher PS,
Stein KD, et al: American cancer society head and neck cancer
survivorship care guideline. CA Cancer J Clin. 66:203–239. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Belcher R, Hayes K, Fedewa S and Chen AY:
Current treatment of head and neck squamous cell cancer. J Surg
Oncol. 110:551–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Timmermans AJ, de Gooijer CJ,
Hamming-Vrieze O, Hilgers FJ and van den Brekel MW: T3-T4 laryngeal
cancer in The Netherlands cancer institute; 10-year results of the
consistent application of an organ-preserving/-sacrificing
protocol. Head Neck. 37:1495–1503. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Layland MK, Sessions DG and Lenox J: The
influence of lymph node metastasis in the treatment of squamous
cell carcinoma of the oral cavity, oropharynx, larynx, and
hypopharynx: N0 versus N+. Laryngoscope. 115:629–639. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
de Miguel-Luken MJ, Chaves-Conde M and
Carnero A: A genetic view of laryngeal cancer heterogeneity. Cell
Cycle. 15:1202–1212. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Compton CC, Byrd DR, Garcia-Aguilar J,
Kurtzman SH, Olawaiye A and Washington MK: Larynx. AJCC Cancer
Staging Atlas: A companion to the seventh editions of the AJCC
cancer staging manual and handbook TNM classification of malignant
tumours. Springer; New York, NY: pp. 79–90. 2012, View Article : Google Scholar
|
15
|
Ciolofan MS, Vlăescu AN, Mogoantă CA,
Ioniță E, Ioniță I, Căpitănescu AN, Mitroi MR and Anghelina F:
Clinical, histological and immunohistochemical evaluation of larynx
cancer. Curr Health Sci J. 43:367–375. 2017.PubMed/NCBI
|
16
|
Sanguansin S, Kosanwat T, Juengsomjit R
and Poomsawat S: Diagnostic value of cytokeratin 17 during oral
carcinogenesis: An immunohistochemical study. Int J Dent.
2021:40895492021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sayar N, Karahan G, Konu O, Bozkurt B,
Bozdogan O and Yulug IG: Transgelin gene is frequently
downregulated by promoter DNA hypermethylation in breast cancer.
Clin Epigenetics. 7:1042015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Abbasi R, Ramroth H, Becher H, Dietz A,
Schmezer P and Popanda O: Laryngeal cancer risk associated with
smoking and alcohol consumption is modified by genetic
polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms
in five other nucleotide excision repair genes. Int J Cancer.
125:1431–1439. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Krikelis D, Kotoula V, Bobos M, Fountzilas
E, Markou K, Karasmanis I, Angouridakis N, Vlachtsis K, Kalogeras
KT, Nikolaou A and Fountzilas G: Protein and mRNA expression of
notch pathway components in operable tumors of patients with
laryngeal cancer. Anticancer Res. 34:6495–6503. 2014.PubMed/NCBI
|
21
|
Demiral AN, Sarioglu S, Birlik B, Sen M
and Kinay M: Prognostic significance of EGF receptor expression in
early glottic cancer. Auris Nasus Larynx. 31:417–424. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Nijkamp MM, Span PN, Terhaard CHJ,
DoornaertPA H, Langendijk JA, van den EndePLA, de Jong M, van der
Kogel AJ, Bussink J and Kaanders JHAM: Epidermal growth factor
receptor expression in laryngeal cancer predicts the effect of
hypoxia modification as an additive to accelerated radiotherapy in
a randomised controlled trial. Eur J Cancer. 49:3202–3209. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
de Miguel-Luken MJ, Chaves-Conde M, de
Miguel-Luken V, Muñoz-Galván S, López-Guerra JL, Mateos JC, Pachón
J, Chinchón D, Suarez V and Carnero A: MAP17 (PDZKIP1) as a novel
prognostic biomarker for laryngeal cancer. Oncotarget.
6:12625–12636. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
de Miguel-Luken MJ, Chaves-Conde M,
Quintana B, Menoyo A, Tirado I, de Miguel-Luken V, Pachón J,
Chinchón D, Suarez V and Carnero A: Phosphorylation of gH2AX as a
novel prognostic biomarker for laryngoesophageal dysfunction-free
survival. Oncotarget. 7:31723–31737. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Choe MH, Min JW, Jeon HB, Cho DH, Oh JS,
Lee HG, Hwang SG, An S, Han YH and Kim JS: ERp57 modulates STAT3
activity in radioresistant laryngeal cancer cells and serves as a
prognostic marker for laryngeal cancer. Oncotarget. 6:2654–2666.
2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang J, Zhou L, Zhang Y, Zheng J, Zhou J,
Wei Z and Zou J: DIAPH1 Is upregulated and inhibits cell apoptosis
through ATR/p53/caspase-3 signaling pathway in laryngeal squamous
cell carcinoma. Dis Markers. 2019:67164722019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li L, Wang R, He S, Shen X, Kong F, Li S,
Zhao H, Lian M and Fang J: The identification of induction
chemo-sensitivity genes of laryngeal squamous cell carcinoma and
their clinical utilization. Eur Arch Otorhinolaryngol.
275:2773–2781. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Q, Ma L, Wu Z, Wang G, Huang Q, Shen Z
and Yu R: Zinc finger Ebox binding homeobox 2 functions as an
oncogene in human laryngeal squamous cell carcinoma. Mol Med Rep.
19:4545–4552. 2019.PubMed/NCBI
|
29
|
Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J
and Liu M: Long intergenic noncoding RNA HOTAIR is overexpressed
and regulates PTEN methylation in laryngeal squamous cell
carcinoma. Am J Pathol. 182:64–70. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Meng W, Cui W, Zhao L, Chi W, Cao H and
Wang B: Aberrant methylation and downregulation of ZNF667-AS1 and
ZNF667 promote the malignant progression of laryngeal squamous cell
carcinoma. J Biomed Sci. 26:132019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shen Z, Chen X, Li Q, Zhou C, Xu Y, Yu R,
Ye H, Li J and Duan S: Elevated methylation of CMTM3 promoter in
the male laryngeal squamous cell carcinoma patients. Clin Biochem.
49:1278–1282. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang M, Li W, Liu YY, Fu S, Qiu GB, Sun KL
and Fu WN: Promoter hypermethylation-induced transcriptional
down-regulation of the gene MYCT1 in laryngeal squamous cell
carcinoma. BMC Cancer. 12:2192012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang J, Ren X, Wang B, Cao J, Tian L and
Liu M: Effect of DACH1 on proliferation and invasion of laryngeal
squamous cell carcinoma. Head Face Med. 14:202018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang J, Hu H and Zhao Y and Zhao Y:
CDR1as is overexpressed in laryngeal squamous cell carcinoma to
promote the tumour's progression via miR-7 signals. Cell Prolif.
51:e125212018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu X and Li Z: The role of microRNAs
expression in laryngeal cancer. Oncotarget. 6:23297–23305. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li M, Zhao X, Liu Y, An J, Xiao H and Wang
C: Aberrant expression of CDK8 regulates the malignant phenotype
and associated with poor prognosis in human laryngeal squamous cell
carcinoma. Eur Arch Otorhinolaryngol. 274:2205–2213. 2017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Markowski J, Oczko-Wojciechowska M, Gierek
T, Jarzab M, Paluch J, Kowalska M, Wygoda Z, Pfeifer A, Tyszkiewicz
T, Jarzab B, et al: Gene expression profile analysis in laryngeal
cancer by high-density oligonucleotide microarrays. J Physiol
Pharmacol. 60 (Suppl 1):S57–S63. 2009.PubMed/NCBI
|
38
|
Shen Z, Li Q, Deng H, Lu D, Song H and Guo
J: Long non-coding RNA profiling in laryngeal squamous cell
carcinoma and its clinical significance: Potential biomarkers for
LSCC. PLoS One. 9:e1082372014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu CZ, Shi RJ, Chen D, Sun YY, Wu QW, Wang
T and Wang PH: Potential biomarkers for paclitaxel sensitivity in
hypopharynx cancer cell. Int J Clin Exp Pathol. 6:2745–2756.
2013.PubMed/NCBI
|
40
|
Chung CH, Parker JS, Karaca G, Wu J,
Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X,
et al: Molecular classification of head and neck squamous cell
carcinomas using patterns of gene expression. Cancer Cell.
5:489–500. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Klamt F, Zdanov S, Levine RL, Pariser A,
Zhang Y, Zhang B, Yu LR, Veenstra TD and Shacter E: Oxidant-induced
apoptosis is mediated by oxidation of the actin-regulatory protein
cofilin. Nat Cell Biol. 11:1241–1246. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lu LI, Fu NI, Luo XU, Li XY and Li XP:
Overexpression of cofilin 1 in prostate cancer and the
corresponding clinical implications. Oncol Lett. 9:2757–2761. 2015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Polachini GM, Sobral LM, Mercante AM,
Paes-Leme AF, Xavier FCA, Henrique T, Guimarães DM, Vidotto A,
Fukuyama EE, Góis-Filho JF, et al: Proteomic approaches identify
members of cofilin pathway involved in oral tumorigenesis. PLoS
One. 7:e505172012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Madak-Erdogan Z, Ventrella R, Petry L and
Katzenellenbogen BS: Novel roles for ERK5 and cofilin as critical
mediators linking ERalpha-driven transcription, actin
reorganization, and invasiveness in breast cancer. Mol Cancer Res.
12:714–727. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Y, Liao R, Li H, Liu L, Chen X and
Chen H: Expression of Cofilin-1 and transgelin in esophageal
squamous cell carcinoma. Med Sci Monit. 21:2659–2665. 2015.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Camoretti-Mercado B, Forsythe SM, LeBeau
MM, Espinosa R III, Vieira JE, Halayko AJ, Willadsen S, Kurtz B,
Ober C, Evans GA, et al: Expression and cytogenetic localization of
the human SM22 gene (TAGLN). Genomics. 49:452–457. 1998. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou H, Zhang Y, Chen Q and Lin Y: AKT and
JNK signaling pathways increase the metastatic potential of
colorectal cancer cells by altering transgelin expression. Dig Dis
Sci. 61:1091–1097. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhou HM, Fang YY, Weinberger PM, Ding LL,
Cowell JK, Hudson FZ, Ren M, Lee JR, Chen QK, Su H, et al:
Transgelin increases metastatic potential of colorectal cancer
cells in vivo and alters expression of genes involved in cell
motility. BMC Cancer. 16:552016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xu L, Gao Y, Chen Y, Xiao Y, He Q, Qiu H
and Ge W: Quantitative proteomics reveals that distant
recurrence-associated protein R-Ras and Transgelin predict
post-surgical survival in patients with stage III colorectal
cancer. Oncotarget. 7:43868–43893. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Dvorakova M, Jerabkova J, Prochazkova I,
Lenco J, Nenutil R and Bouchal P: Transgelin is upregulated in
stromal cells of lymph node positive breast cancer. J Proteomics.
132:103–111. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wu X, Dong L, Zhang R, Ying K and Shen H:
Transgelin overexpression in lung adenocarcinoma is associated with
tumor progression. Int J Mol Med. 34:585–591. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bu J, Bu X, Liu B, Chen F and Chen P:
Increased expression of tissue/salivary transgelin mRNA predicts
poor prognosis in patients with oral squamous cell carcinoma
(OSCC). Med Sci Monit. 21:2275–2281. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Winer A, Adams S and Mignatti P: Matrix
metalloproteinase inhibitors in cancer therapy: Turning past
failures into future successes. Mol Cancer Ther. 17:1147–1155.
2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yamaguchi H and Condeelis J: Regulation of
the actin cytoskeleton in cancer cell migration and invasion.
Biochim Biophys Acta. 1773:642–652. 2007. View Article : Google Scholar : PubMed/NCBI
|
55
|
Roche J: Erratum: Roche, J. The
epithelial-to-mesenchymal transition in cancer. Cancers (Basel).
10:792018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lin Y, Buckhaults PJ, Lee JR, Xiong H,
Farrell C, Podolsky RH, Schade RR and Dynan WS: Association of the
actin-binding protein transgelin with lymph node metastasis in
human colorectal cancer. Neoplasia. 11:864–873. 2009. View Article : Google Scholar : PubMed/NCBI
|