Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)
- Authors:
- Yuming Lou
- Minfeng Ye
- Chaoyang Xu
- Feng Tao
-
Affiliations: Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China - Published online on: November 1, 2022 https://doi.org/10.3892/ol.2022.13575
- Article Number: 455
-
Copyright: © Lou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg AL: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 78:761–771. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kwon YT and Ciechanover A: The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 42:873–886. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dikic I: Proteasomal and autophagic degradation systems. Annu Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ronai ZA: Monoubiquitination in proteasomal degradation. Proc Natl Acad Sci USA. 113:8894–8896. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D and Matouschek A: The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun. 11:4772020. View Article : Google Scholar : PubMed/NCBI | |
Varshavsky A: The ubiquitin system, an immense realm. Annu Rev Biochem. 81:167–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Husnjak K and Dikic I: Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 81:291–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yau R and Rape M: The increasing complexity of the ubiquitin code. Nat Cell Biol. 18:579–586. 2016. View Article : Google Scholar : PubMed/NCBI | |
Swatek KN and Komander D: Ubiquitin modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mevissen TET and Komander D: Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 86:159–192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 44:325–340. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morreale FE and Walden H: Types of ubiquitin ligases. Cell. 165:248–248.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heride C, Urbé S and Clague MJ: Ubiquitin code assembly and disassembly. Curr Biol. 24:R215–R220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S and López-Otín C: Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun. 314:54–62. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER III, Li MZ, Hannon GJ, Sorger PK, et al: Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature. 446:876–881. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, et al: RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell. 46:662–673. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang YK, Tian WZ, Zhang RS, Zhang YJ and Ma HT: Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci. 35:535–541. 2019. View Article : Google Scholar : PubMed/NCBI | |
Komander D, Clague MJ and Urbe S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Belle JI and Nijnik A: H2A-DUBbing the mammalian epigenome: Expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol. 50:161–174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE and Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 111:1041–1054. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson KD: Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11:1245–1256. 1997. View Article : Google Scholar : PubMed/NCBI | |
Amerik A, Swaminathan S, Krantz BA, Wilkinson KD and Hochstrasser M: In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16:4826–4838. 1997. View Article : Google Scholar : PubMed/NCBI | |
D'Andrea A and Pellman D: Deubiquitinating enzymes: A new class of biological regulators. Crit Rev Biochem Mol Biol. 33:337–352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chung CH and Baek SH: Deubiquitinating enzymes: Their diversity and emerging roles. Biochem Biophys Res Commun. 266:633–640. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J and Galardy PJ: USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 122:4362–4374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD, Galardy PJ, Washburn MP, Workman JL and Dent SYR: USP44 is an integral component of N-CoR that contributes to gene repression by deubiquitinating histone H2B. Cell Rep. 17:2382–2393. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mosbech A, Lukas C, Bekker-Jensen S and Mailand N: The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem. 288:16579–16587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suresh B, Ramakrishna S, Lee HJ, Choi JH, Kim JY, Ahn WS and Baek KH: K48- and K63-linked polyubiquitination of deubiquitinating enzyme USP44. Cell Biol Int. 34:799–808. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang HY, Liao BW, Xu ZS, Ran Y, Wang DP, Yang Y, Luo WW and Wang YY: USP44 positively regulates innate immune response to DNA viruses through deubiquitinating MITA. PLoS Pathog. 16:e10081782020. View Article : Google Scholar : PubMed/NCBI | |
Lang G, Bonnet J, Umlauf D, Karmodiya K, Koffler J, Stierle M, Devys D and Tora L: The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol. 31:3734–3744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Tempst P, et al: USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev. 27:1581–1595. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harrigan JA, Jacq X, Martin NM and Jackson SP: Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Guo J, North BJ, Wang B, Cui CP, Li H, Tao K, Zhang L and Wei W: Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer. 1872:1883122019. View Article : Google Scholar : PubMed/NCBI | |
Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S and Nijnik A: USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol. 72:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu H: Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol. 14:706–714. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sudakin V, Chan GK and Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 154:925–936. 2001. View Article : Google Scholar : PubMed/NCBI | |
Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, Russell P, Pines J and Venkitaraman AR: UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol. 11:1363–1369. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J and Rape M: The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell. 144:769–781. 2011. View Article : Google Scholar : PubMed/NCBI | |
Williamson A, Banerjee S, Zhu X, Philipp I, Iavarone AT and Rape M: Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol Cell. 42:744–757. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Zhang Z, Yang J, McLaughlin SH and Barford D: Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature. 522:450–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ciechanover A: Proteolysis: From the lysosome to ubiquitin and the proteasome. Nat Rev Mol. 6:79–87. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meyer HJ and Rape M: Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol. 22:544–550. 2011. View Article : Google Scholar : PubMed/NCBI | |
Primorac I and Musacchio A: Panta rhei: The APC/C at steady state. J Cell Biol. 201:177–189. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reddy SK, Rape M, Margansky WA and Kirschner MW: Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature. 446:921–925. 2007. View Article : Google Scholar : PubMed/NCBI | |
Izawa D and Pines J: The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 517:631–634. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alfieri C, Chang L, Zhang Z, Yang J, Maslen S, Skehel M and Barford D: Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature. 536:431–436. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bekker-Jensen S and Mailand N: Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst). 9:1219–1228. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lukas J, Lukas C and Bartek J: More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol. 13:1161–1169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, Tan X, Li J, He S, Li Y, et al: USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun. 13:5012022. View Article : Google Scholar : PubMed/NCBI | |
Kamileri I, Karakasilioti I and Garinis GA: Nucleotide excision repair: New tricks with old bricks. Trends Genet. 28:566–573. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marteijn JA, Lans H, Vermeulen W and Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 15:465–481. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Mandemaker IK, Matsumoto S, Foreman O, Holland CP, Lloyd WR, Sugasawa K, Vermeulen W, Marteijn JA and Galardy PJ: USP44 stabilizes DDB2 to facilitate nucleotide excision repair and prevent tumors. Front Cell Dev Biol. 9:6634112021. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, et al: The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 21:e503082020. View Article : Google Scholar : PubMed/NCBI | |
Luo WW and Shu HB: Delicate regulation of the cGAS-MITA-mediated innate immune response. Cell Mol Immunol. 15:666–675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li J, Wang DL and Sun FL: Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation. Cell Res. 22:1402–1405. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A, Snaidero N, Vogel T, Shchebet A, Begus-Nahrmann Y, et al: The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell. 46:705–713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ: Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 8:931–937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Jing Y, Kang X, Yang L, Wang DL, Zhang W, Zhang L, Chen P, Chang JF, Yang XM and Sun FL: Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 45:1144–1158. 2017.PubMed/NCBI | |
Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, Huang Z, Qiu W, Liu M, Yang K, et al: Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 11:7582020. View Article : Google Scholar : PubMed/NCBI | |
Targa A and Rancati G: Cancer: A CINful evolution. Curr Opin Cell Biol. 52:136–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gordon DJ, Resio B and Pellman D: Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 13:189–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Simonetti G, Bruno S, Padella A, Tenti E and Martinelli G: Aneuploidy: Cancer strength or vulnerability? Int J Cancer. 144:8–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y and Maehara Y: High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 6:1453–1464. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, van Deursen J and Galardy PJ: Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One. 6:e233892011. View Article : Google Scholar : PubMed/NCBI | |
Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H and Yang B: Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol. 9:10802018. View Article : Google Scholar : PubMed/NCBI | |
Timson DJ: Fructose 1,6-bisphosphatase: Getting the message across. Biosci Rep. 39:BSR201901242019. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zhu S, Yang H, Deng S, Fan P, Li M and Jin X: USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am J Cancer Res. 9:1722–1733. 2019.PubMed/NCBI | |
Jin X, Pan Y, Wang L, Ma T, Zhang L, Tang AH, Billadeau DD, Wu H and Huang H: Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction. Cancer Res. 77:4328–4341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Teodoridis JM, Strathdee G and Brown R: Epigenetic silencing mediated by CpG island methylation: Potential as a therapeutic target and as a biomarker. Drug Resist Updat. 7:267–278. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sloane MA, Wong JW, Perera D, Nunez AC, Pimanda JE, Hawkins NJ, Sieber OM, Bourke MJ, Hesson LB and Ward RL: Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics. 9:1092–1100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Zhang Q, Ren W, Yan B, Yi L, Tang T, Lin H and Zhang Y: USP44 suppresses proliferation and enhances apoptosis in colorectal cancer cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. Cell Biol Int. 44:1651–1659. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L and Zou J: Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer. 20:2142020. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Cao Y and Ma X: Novel prognostic prediction model constructed through machine learning on the basis of methylation-driven genes in kidney renal clear cell carcinoma. Biosci Rep. 40:BSR202016042020. View Article : Google Scholar : PubMed/NCBI | |
Molina JR, Yang P, Cassivi SD, Schild SE and Adjei AA: Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Tian W, Jiang C, Huang Z and Zheng S: The anthelmintic agent oxfendazole inhibits cell growth in non-small cell lung cancer by suppressing c-Src activation. Mol Med Rep. 19:2921–2926. 2019.PubMed/NCBI | |
Liu T, Sun B, Zhao X, Li Y, Zhao X, Liu Y, Yao Z, Gu Q, Dong X, Shao B, et al: USP44+ cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Ther. 14:2121–2131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao X, Zhang W and Hao X: Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep. 16:693–698. 2006.PubMed/NCBI | |
Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK and Liu ZY: Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: A study of hepatocellular carcinoma. Hepatology. 54:1690–1706. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Yang K, Liu RL, Meng C, Dang RF and Xu Y: Formation of vasculogenic mimicry in bone metastasis of prostate cancer: Correlation with cell apoptosis and senescence regulation pathways. Pathol Res Pract. 210:291–295. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wu X and Lei W: USP44 hypermethylation promotes cell proliferation and metastasis in breast cancer. Future Oncol. 17:279–289. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tarcic O, Granit RZ, Pateras IS, Masury H, Maly B, Zwang Y, Yarden Y, Gorgoulis VG, Pikarsky E, Ben-Porath I and Oren M: RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death Differ. 24:694–704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W and Hu G: Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 8:58231–58246. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duan R, Du W and Guo W: EZH2: A novel target for cancer treatment. J Hematol Oncol. 13:1042020. View Article : Google Scholar : PubMed/NCBI | |
Nutt SL, Keenan C, Chopin M and Allan RS: EZH2 function in immune cell development. Biol Chem. 401:933–943. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Hu H, Yang Y, Zhou G, Shang Z, Yang X, Sun K, Zhan S, Yu Z, Li P, et al: Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the induction of autophagy and apoptosis in colorectal cancer cells. Genes (Basel). 7:832016. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Teo YV, Evans SA, Neretti N and Sedivy JM: Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22:3480–3492. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park JM, Lee JE, Park CM and Kim JH: USP44 promotes the tumorigenesis of prostate cancer cells through EZH2 protein stabilization. Mol Cells. 42:17–27. 2019.PubMed/NCBI | |
Xiang T, Jiang HS, Zhang BT and Liu G: CircFOXO3 functions as a molecular sponge for miR-143-3p to promote the progression of gastric carcinoma via upregulating USP44. Gene. 753:1447982020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Oron E, Nelson B, Razis S and Ivanova N: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell. 10:440–454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI | |
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jung M, Peterson H, Chavez L, Kahlem P, Lehrach H, Vilo J and Adjaye J: A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells. PLoS One. 5:e107092010. View Article : Google Scholar : PubMed/NCBI | |
Tropel P, Jung L, André C, Ndandougou A and Viville S: CpG island methylation correlates with the use of alternative promoters for USP44 gene expression in human pluripotent stem cells and testes. Stem Cells Dev. 26:1100–1110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mocciaro A and Rape M: Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci. 125:255–263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kernan J, Bonacci T and Emanuele MJ: Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. Biochim Biophys Acta Mol Cell Res. 1865:1924–1933. 2018. View Article : Google Scholar : PubMed/NCBI | |
Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Visconti R, Palazzo L, Della Monica R and Grieco D: Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat Commun. 3:8942012. View Article : Google Scholar : PubMed/NCBI | |
Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet. 16:R50–R59. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jung J, Kim Y, Song J, Yoon YJ, Kim DE, Kim JA, Jin Y, Lee YJ, Kim S, Kwon BM and Han DC: KRIBB53 binds to OCT4 and enhances its degradation through the proteasome, causing apoptotic cell death of OCT4-positive testicular germ cell tumors. Carcinogenesis. 39:838–849. 2018. View Article : Google Scholar : PubMed/NCBI |