FOXK2 transcription factor and its roles in tumorigenesis (Review)
- Authors:
- Zhaojun Wang
- Xinling Liu
- Zhanju Wang
- Zhenbo Hu
-
Affiliations: Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China - Published online on: November 3, 2022 https://doi.org/10.3892/ol.2022.13581
- Article Number: 461
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chen Y, Wu J, Liang G, Geng G, Zhao F, Yin P, Nowsheen S, Wu C, Li Y, Li L, et al: CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 6:eaax58192020. View Article : Google Scholar : PubMed/NCBI | |
He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, Cho S, Chavez A, Islam T, Yu Y, et al: mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell. 70:949–960.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E, Rump A, Fauth C, Tinschert S and Oexle K: Severe intellectual disability, west syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 161A:3144–3149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nestal de Moraes G, Carneiro LD, Maia RC, Lam EW and Sharrocks AD: FOXK2 transcription factor and its emerging roles in cancer. Cancers (Basel). 11:3932019. View Article : Google Scholar : PubMed/NCBI | |
Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B, Simon I and Bar-Joseph Z: Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol. 5:2762009. View Article : Google Scholar : PubMed/NCBI | |
Dai Z, Dai X, Xiang Q and Feng J: Robustness of transcriptional regulatory program influences gene expression variability. BMC Genomics. 10:5732009. View Article : Google Scholar : PubMed/NCBI | |
Wu WS and Lai FJ: Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out. BMC Syst Biol. 9 (Suppl 6):S22015. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kaestner KH, Knochel W and Martinez DE: Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142–146. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lam EW, Brosens JJ, Gomes AR and Koo CY: Forkhead box proteins: Tuning forks for transcriptional harmony. Nat Rev Cancer. 13:482–495. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL and Bulyk ML: DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc Natl Acad Sci USA. 110:12349–12354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li C, Lai CF, Sigman DS and Gaynor RB: Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA. 88:7739–7743. 1991. View Article : Google Scholar : PubMed/NCBI | |
Huang JT and Lee V: Identification and characterization of a novel human FOXK1 gene in silico. Int J Oncol. 25:751–757. 2004.PubMed/NCBI | |
Mahajan A, Yuan C, Lee H, Chen ES, Wu PY and Tsai MD: Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. 1:re122008. View Article : Google Scholar : PubMed/NCBI | |
Durocher D and Jackson SP: The FHA domain. FEBS Lett. 513:58–66. 2002. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt HC and Yaffe MB: Phospho-Ser/Thr-binding domains: Navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 14:563–580. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kalnina Z, Zayakin P, Silina K and Linē A: Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer. 42:342–357. 2005. View Article : Google Scholar : PubMed/NCBI | |
Roy M, Xu Q and Lee C: Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 33:5026–5033. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D and Harper SJ: VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62:4123–4131. 2002.PubMed/NCBI | |
Hu Y, Fang C and Xu Y: The effect of isoforms of the cell polarity protein, human ASIP, on the cell cycle and Fas/FasL-mediated apoptosis in human hepatoma cells. Cell Mol Life Sci. 62:1974–1983. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Duke L, Zhang PS, Arlinghaus RB, Symmans WF, Sahin A, Mendez R and Dai JL: Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res. 63:4724–4730. 2003.PubMed/NCBI | |
Nirula A, Moore DJ and Gaynor RB: Constitutive binding of the transcription factor interleukin-2 (IL-2) enhancer binding factor to the IL-2 promoter. J Biol Chem. 272:7736–7745. 1997. View Article : Google Scholar : PubMed/NCBI | |
Marais A, Ji Z, Child ES, Krause E, Mann DJ and Sharrocks AD: Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes. J Biol Chem. 285:35728–35739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan Q, Shai O, Lee LJ, Frey BJ and Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 40:1413–1415. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li C, Lusis AJ, Sparkes R, Nirula A and Gaynor R: Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein ILF. Genomics. 13:665–671. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Merkin J, Russell C, Chen P and Burge CB: Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 338:1593–1599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Climente-González H, Porta-Pardo E, Godzik A and Eyras E: The functional impact of alternative splicing in cancer. Cell Rep. 20:2215–2226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li X, Lee M, Jun S, Aziz KE, Feng L, Tran MK, Li N, McCrea PD, Park JI and Chen J: FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus. Dev Cell. 32:707–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X and Wang J: FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 458:1–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Giardina B, Messana I, Scatena R and Castagnola M: The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol. 30:165–196. 1995. View Article : Google Scholar : PubMed/NCBI | |
Arbez N, Ratovitski T, Roby E, Chighladze E, Stewart JC, Ren M, Wang X, Lavery DJ and Ross CA: Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. J Biol Chem. 292:19238–19249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Snider NT and Omary MB: Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat Rev Mol Cell Biol. 15:163–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z and Xu H: Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196. 2017.PubMed/NCBI | |
Corujo D and Buschbeck M: Post-translational modifications of H2A histone variants and their role in cancer. Cancers (Basel). 10:592018. View Article : Google Scholar : PubMed/NCBI | |
Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M and Cabras T: Cryptides: Latent peptides everywhere. Crit Rev Biochem Mol Biol. 53:246–263. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K and Wu CH: iPTMnet: An integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 46:D542–D550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yao B, Christian KM, He C, Jin P, Ming GL and Song H: Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 17:537–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu MY, DeNizio JE, Schutsky EK and Kohli RM: The expanding scope and impact of epigenetic cytosine modifications. Curr Opin Chem Biol. 33:67–73. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jones MJ, Goodman SJ and Kobor MS: DNA methylation and healthy human aging. Aging Cell. 14:924–932. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bird A: Perceptions of epigenetics. Nature. 447:396–398. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida T, Mano T, Koshi-Mano K, Bannai T, Matsubara T, Yamashita S, Ushijima T, Nagata K, Murayama S, Toda T, et al: Methylation changes and aberrant expression of FGFR3 in Lewy body disease neurons. Brain Res. 1697:59–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pan XY, Yang Y, Meng HW, Li HD, Chen X, Huang HM, Bu FT, Yu HX, Wang Q, Huang C, et al: DNA methylation of PTGIS enhances hepatic stellate cells activation and liver fibrogenesis. Front Pharmacol. 9:5532018. View Article : Google Scholar : PubMed/NCBI | |
Hopp L, Löffler-Wirth H, Galle J and Binder H: Combined SOM-portrayal of gene expression and DNA methylation landscapes disentangles modes of epigenetic regulation in glioblastoma. Epigenomics. 10:745–764. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Serra P and Esteller M: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : PubMed/NCBI | |
Le TN, Schumann U, Smith NA, Tiwari S, Au PC, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, et al: DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15:4582014. View Article : Google Scholar : PubMed/NCBI | |
Jung M and Pfeifer GP: Aging and DNA methylation. BMC Biol. 13:72015. View Article : Google Scholar : PubMed/NCBI | |
Bormann F, Rodríguez-Paredes M, Lasitschka F, Edelmann D, Musch T, Benner A, Bergman Y, Dieter SM, Ball CR, Glimm H, et al: Cell-of-Origin DNA methylation signatures are maintained during colorectal carcinogenesis. Cell Rep. 23:3407–3418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33 (Suppl):S245–S254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robertson KD: DNA methylation and human disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bird A, Taggart M, Frommer M, Miller OJ and Macleod D: A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 40:91–99. 1985. View Article : Google Scholar : PubMed/NCBI | |
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, et al: Differential DNA methylation by hispanic ethnicity among firefighters in the United States. Epigenet Insights. Mar 26–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF and Fernandez-Real JM: An epigenetic signature in adipose tissue is linked to nicotinamide N-methyltransferase gene expression. Mol Nutr Food Res. Apr 24–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, Grossmann M, Sanseverino W, Martin-Subero JI, Garrido N and Blanco J: Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: An array-based analysis. Reprod Biomed Online. 33:709–719. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nwanaji-Enwerem JC, Jenkins TG, Colicino E, Cardenas A, Baccarelli AA and Boyer EW: Serum dioxin levels and sperm DNA methylation age: Findings in Vietnam war veterans exposed to agent orange. Reprod Toxicol. 96:27–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park SL, Patel YM, Loo LW, Mullen DJ, Offringa IA, Maunakea A, Stram DO, Siegmund K, Murphy SE, Tiirikainen M and Le Marchand L: Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics. 10:1102018. View Article : Google Scholar : PubMed/NCBI | |
Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F and Binder EB: Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 80:372–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hughes MF: Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 133:1–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Baylin SB: The epigenomics of cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI | |
Timbergen MJM, Boers R, Vriends ALM, Boers J, van IJcken WFJ, Lavrijsen M, Grünhagen DJ, Verhoef C, Sleijfer S, Smits R, et al: Differentially methylated regions in desmoid-type fibromatosis: A comparison between CTNNB1 S45F and T41A tumors. Front Oncol. 10:5650312020. View Article : Google Scholar : PubMed/NCBI | |
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, et al: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152:1146–1159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S and Reik W: A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14:R1192013. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C, et al: DNA methylation presents distinct binding sites for human transcription factors. Elife. 2:e007262013. View Article : Google Scholar : PubMed/NCBI | |
Baymaz HI, Fournier A, Laget S, Ji Z, Jansen PW, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, et al: MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics. 14:2179–2189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wilmanns M, Thornton J and Köhn M: Elucidating human phosphatase-substrate networks. Sci Signal. 6:rs102013. View Article : Google Scholar : PubMed/NCBI | |
Sacco F, Perfetto L, Castagnoli L and Cesareni G: The human phosphatase interactome: An intricate family portrait. FEBS Lett. 586:2732–2739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fukami Y and Lipmann F: Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc Natl Acad Sci USA. 80:1872–1876. 1983. View Article : Google Scholar : PubMed/NCBI | |
Kole HK, Abdel-Ghany M and Racker E: Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases. Proc Natl Acad Sci USA. 85:5849–5853. 1988. View Article : Google Scholar : PubMed/NCBI | |
Almawi AW, Matthews LA and Guarné A: FHA domains: Phosphopeptide binding and beyond. Prog Biophys Mol Biol. 127:105–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN and Futcher B: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 406:90–94. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pic-Taylor A, Darieva Z, Morgan BA and Sharrocks AD: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol. 24:10036–10046. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI | |
Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li A, Wang J, Wu M, Zhang X and Zhang H: The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol. 747:71–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aitken A: 14-3-3 proteins: A historic overview. Semin Cancer Biol. 16:162–172. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nakatsumi H, Oka T, Higa T, Shirane M and Nakayama KI: Nuclear-cytoplasmic shuttling protein PP2AB56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells. 23:599–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakatsumi H, Matsumoto M and Nakayama KI: Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated macrophages. Cell Rep. 21:2471–2486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi M, Cai W, Wang CH, Cederquist CT, Damasio M, Homan EP, Batista T, Ramirez AK, Gupta MK, Steger M, et al: FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun. 10:15822019. View Article : Google Scholar : PubMed/NCBI | |
Amaya MJ, Oliveira AG, Guimarães ES, Casteluber MC, Carvalho SM, Andrade LM, Pinto MC, Mennone A, Oliveira CA, Resende RR, et al: The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology. 59:274–283. 2014. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: Identification and characterization of human FOXK1 gene in silico. Int J Mol Med. 14:127–132. 2004.PubMed/NCBI | |
Bowman CJ, Ayer DE and Dynlacht BD: Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol. 16:1202–1214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, et al: FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 566:279–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, et al: Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 12:557–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M and Iñiguez-Lluhí JA: Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. J Biol Chem. 287:18318–18329. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sutinen P, Rahkama V, Rytinki M and Palvimo JJ: Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 28:1719–1728. 2014. View Article : Google Scholar : PubMed/NCBI | |
Song JG, Xie HH, Li N, Wu K, Qiu JG, Shen DM and Huang CJ: SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1. Tumour Biol. 36:9865–9871. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meredith LJ, Wang CM, Nascimento L, Liu R, Wang L and Yang WH: The key regulator for language and speech development, FOXP2, is a novel substrate for SUMOylation. J Cell Biochem. 117:426–438. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rocca DL, Wilkinson KA and Henley JM: SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep. 7:8772017. View Article : Google Scholar : PubMed/NCBI | |
Nestal de Moraes G, Ji Z, Fan LY, Yao S, Zona S, Sharrocks AD and Lam EW: SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis. 7:292018. View Article : Google Scholar : PubMed/NCBI | |
Shmueli A and Oren M: Life, death and ubiquitin: Taming the mule. Cell. 121:963–965. 2005. View Article : Google Scholar : PubMed/NCBI | |
López-Otín C and Hunter T: The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 10:278–292. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ikeda F and Dikic I: Atypical ubiquitin chains: New molecular signals. ‘Protein modifications: Beyond the usual suspects’ review series. EMBO Rep. 9:536–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suryadinata R, Roesley SN, Yang G and Sarčević B: Mechanisms of generating polyubiquitin chains of different topology. Cells. 3:674–689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rajalingam K and Dikic I: SnapShot: Expanding the ubiquitin code. Cell. 164:1074–1074.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW and Müller J: Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 465:243–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR, Kuscu C, Hricik T, Ndiaye-Lobry D, Lafave LM, et al: Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 210:2641–2659. 2013. View Article : Google Scholar : PubMed/NCBI | |
LaFave LM, Béguelin W, Koche R, Teater M, Spitzer B, Chramiec A, Papalexi E, Keller MD, Hricik T, Konstantinoff K, et al: Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 21:1344–1349. 2015. View Article : Google Scholar : PubMed/NCBI | |
Micol JB and Abdel-Wahab O: The role of additional sex combs-like proteins in cancer. Cold Spring Harb Perspect Med. 6:a0265262016. View Article : Google Scholar : PubMed/NCBI | |
Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F, Chen H, Shahidian LZ, Vassilev I, Servant N, et al: BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun. 10:3482019. View Article : Google Scholar : PubMed/NCBI | |
Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS and Sharrocks AD: The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 42:6232–6242. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Wahab O and Dey A: The ASXL-BAP1 axis: New factors in myelopoiesis, cancer and epigenetics. Leukemia. 27:10–15. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carbone M, Yang H, Pass HI, Krausz T, Testa JR and Gaudino G: BAP1 and cancer. Nat Rev Cancer. 13:153–159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chittock EC, Latwiel S, Miller TC and Müller CW: Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 45:193–205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Okino Y, Machida Y, Frankland-Searby S and Machida YJ: BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J Biol Chem. 290:1580–1591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F III, Reinberg D and Barlev NA: Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol. 27:6756–6769. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li G, Margueron R, Hu G, Stokes D, Wang YH and Reinberg D: Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell. 38:41–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang XW, Guo QQ, Yu Y, Zhou TT, Zhang SY, Wang Z, Liu JW, Tang J, Jiang XY, Wang SS, et al: The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin. J Cell Mol Med. 26:491–506. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS and Haussler D: Ultraconserved elements in the human genome. Science. 304:1321–1325. 2004. View Article : Google Scholar : PubMed/NCBI | |
Johnsson P, Lipovich L, Grandér D and Morris KV: Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840:1063–1071. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kentwell J, Gundara JS and Sidhu SB: Noncoding RNAs in endocrine malignancy. Oncologist. 19:483–491. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lieberman J: Tapping the RNA world for therapeutics. Nat Struct Mol Biol. 25:357–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C and Devaux Y; EU-CardioRNA COST Action (CA17129), : Regulatory RNAs in heart failure. Circulation. 141:313–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamamura S, Imai-Sumida M, Tanaka Y and Dahiya R: Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 75:467–484. 2018. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, et al: Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell. 35:868–880. 2009. View Article : Google Scholar : PubMed/NCBI | |
Min KW, Jo MH, Shin S, Davila S, Zealy RW, Kang SI, Lloyd LT, Hohng S and Yoon JH: AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 45:6064–6073. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Ding J, Li D, Yang G, Cheng Z and Zhu Q: NUDT21 regulates 3′-UTR length and microRNA-mediated gene silencing in hepatocellular carcinoma. Cancer Lett. 410:158–168. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, Huang S, Zhao Y and He X: MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 9:5022018. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Liu L, Kwame Amevor F, Zhu Q, Wang Y, Li D, Shu G, Tian Y and Zhao X: High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol. 8:5800722020. View Article : Google Scholar : PubMed/NCBI | |
Lin MF, Yang YF, Peng ZP, Zhang MF, Liang JY, Chen W, Liu XH and Zheng YL: FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma. Int J Biochem Cell Biol. 88:155–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Jiang S, Hu F, Xu Y, Wang T and Mei Q: Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and proliferation through the repression of different key target genes. Oncol Rep. 37:2335–2347. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harada K, Baba Y, Ishimoto T, Shigaki H, Kosumi K, Yoshida N, Watanabe M and Baba H: The role of microRNA in esophageal squamous cell carcinoma. J Gastroenterol. 51:520–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Yu J, Wang D, Niu Y, Chen S, Gao P, Yang Z, Wang H, Zhang J, Zhang C, et al: Epigenetically upregulated MicroRNA-602 is involved in a negative feedback loop with FOXK2 in esophageal squamous cell carcinoma. Mol Ther. 27:1796–1809. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang H, Liu C, Mu X and Cheng S: Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications. 33:374–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhao L, Li X, Shang G, Gao L, Song Z and Li T: Mir-204 regulates LPS-induced A549 cell damage by targeting FOXK2. J Healthc Eng. 2021:74046712021. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patop IL and Kadener S: circRNAs in cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11:212018. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YY, Zhan BT, et al: Emerging landscape of circular RNAs in lung cancer. Cancer Lett. 427:18–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hua Q, Chen Y, Liu Y, Li M, Diao Q, Xue H, Zeng H, Huang L and Jiang Y: Circular RNA 0039411 is involved in neodymium oxide-induced inflammation and antiproliferation in a human bronchial epithelial cell line via sponging miR-93-5p. Toxicol Sci. 170:69–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, Tao B, Zhang J and Cao F: The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin and SERCA2a. Circ Res. 127:e108–e125. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Guo R, Liu Q, Sun J and Wang H: Circular RNA Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 axis. Reprod Sci. 27:860–868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Liu TT, Yu XN, Balakrishnan A, Zhu HR, Guo HY, Zhang GC, Bilegsaikhan E, Sun JL, Song GQ, et al: microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene. 39:5768–5781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX and Yang SM: miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett. 408:23–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen S, Xiu YL, Sun KX, Zong ZH and Zhao Y: RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer. 14:312015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chu ZP, Han H, Zhang Y, Tian F, Zhang JQ and Huang XH: Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell. 32:160–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ge YZ, Xu L and Jia R: Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 254:1171762020. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Yin A, Zhang W, Lv J, Liang Y, Li H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2 pathway. Cell Transplant. 29:9636897209257512020. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Cheng D, Li G, Liu Y, Li P, Sun W, Ma D and Ni C: CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Biol Sci. 17:2294–2307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI | |
St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kitagawa M, Kitagawa K, Kotake Y, Niida H and Ohhata T: Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 70:4785–4794. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ballarino M, Morlando M, Fatica A and Bozzoni I: Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest. 126:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brazão TF, Johnson JS, Müller J, Heger A, Ponting CP and Tybulewicz VL: Long noncoding RNAs in B-cell development and activation. Blood. 128:e10–e19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Delás MJ, Sabin LR, Dolzhenko E, Knott SR, Munera Maravilla E, Jackson BT, Wild SA, Kovacevic T, Stork EM, Zhou M, et al: lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife. 6:e256072017. View Article : Google Scholar : PubMed/NCBI | |
Sirey TM, Roberts K, Haerty W, Bedoya-Reina O, Rogatti-Granados S, Tan JY, Li N, Heather LC, Carter RN, Cooper S, et al: The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. Elife. 8:e450512019. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y and Li C: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 21:572–584. 2022. View Article : Google Scholar : PubMed/NCBI | |
Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A, Sandoval J, Hashimoto Y, Martinez-Cardús A, Gomez A, et al: Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA. 113:E7535–E7544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Lan J, Xiao Y, Liu P, Guo D, Gu Y, Song Y, Zhong Q, Ma D, Lei P and Liu Q: Long noncoding RNA TP53TG1 suppresses the growth and metastasis of hepatocellular carcinoma by regulating the PRDX4/β-catenin pathway. Cancer Lett. 513:75–89. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X and Gong Z: lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 19:92020. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Xiang Y, Sheng J, Liu S, Cui M and Zhang X: Long non-coding RNA CRNDE promotes malignant progression of hepatocellular carcinoma through the miR-33a-5p/CDK6 axis. J Physiol Biochem. 76:469–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sasaki M, Ishikawa T, Ishiguro M, Okazaki S, Yamauchi S, Kikuchi A, Matsuyama T, Kawada K, Tokunaga M, Uetake H and Kinugasa Y: The effectiveness of plasma miR-33a-5p as a predictive biomarker for the efficacy of colorectal cancer chemotherapy. Oncol Lett. 21:4892021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Gao J and Huang S: LncRNA SNHG7 promotes the HCC progression through miR-122-5p/FOXK2 axis. Dig Dis Sci. 67:925–935. 2022. View Article : Google Scholar : PubMed/NCBI | |
van der Heide LP, Wijchers PJ, von Oerthel L, Burbach JP, Hoekman MF and Smidt MP: FoxK2 is required for cellular proliferation and survival. J Cell Physiol. 230:1013–1023. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Xia S and Feng Z: Sox9 mediated transcriptional activation of FOXK2 is critical for colorectal cancer cells proliferation. Biochem Biophys Res Commun. 483:475–481. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji Z, Donaldson IJ, Liu J, Hayes A, Zeef LA and Sharrocks AD: The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol. 32:385–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meehan RR, Lewis JD, McKay S, Kleiner EL and Bird AP: Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 58:499–507. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hendrich B and Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 18:6538–6547. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Ji Z, Webber A and Sharrocks AD: Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst forkhead transcription factors. Nucleic Acids Res. 44:1566–1578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Komorek J, Kuppuswamy M, Subramanian T, Vijayalingam S, Lomonosova E, Zhao LJ, Mymryk JS, Schmitt K and Chinnadurai G: Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors. J Virol. 84:2719–2731. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Cao F, Lu C, He X, Weng L and Sun L: Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression. Cancer Sci. 113:565–575. 2022. View Article : Google Scholar : PubMed/NCBI | |
Good MC, Zalatan JG and Lim WA: Scaffold proteins: Hubs for controlling the flow of cellular information. Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan CQ, Sudol M, Sheetz M and Low BC: Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal. 24:2143–2165. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kagan JC, Magupalli VG and Wu H: SMOCs: Supramolecular organizing centres that control innate immunity. Nat Rev Immunol. 14:821–826. 2014. View Article : Google Scholar : PubMed/NCBI | |
Langeberg LK and Scott JD: Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol. 16:232–244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ao X, Jia Z, Bai XY, Xu Z, Hu G, Jiang X, Chen M and Wu H: FOXK2 transcription factor suppresses ERα-positive breast cancer cell growth through down-regulating the stability of ERα via mechanism involving BRCA1/BARD1. Sci Rep. 5:87962015. View Article : Google Scholar : PubMed/NCBI | |
Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, Vogelstein B and Modrich P: Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 75:1227–1236. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M and Kolodner R: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 75:1027–1038. 1993. View Article : Google Scholar : PubMed/NCBI | |
Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomäki P, Sistonen P, Aaltonen LA, Nyström-Lahti M, et al: Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 75:1215–1225. 1993. View Article : Google Scholar : PubMed/NCBI | |
Katoh M, Igarashi M, Fukuda H, Nakagama H and Katoh M: Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328:198–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al: Association analysis identifies 65 new breast cancer risk loci. Nature. 551:92–94. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujii Y and Nakamura M: FOXK2 transcription factor is a novel G/T-mismatch DNA binding protein. J Biochem. 147:705–709. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao Y, Gu L, Xie Y, et al: FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer. 142:2543–2557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, Yu N, Yang C, Liu B, Gao J, et al: FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 30:708–722. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Zhang X, Wang W, Zhu Z, Tang F, Wang D, Liu X, Zhuang H and Yan X: Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis. Onco Targets Ther. 11:1067–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang P, Ju H, Zhu T, Shi J and Huang Y: FOXK2 promotes the proliferation of papillary thyroid cancer cell by down-regulating autophagy. J Cancer. 13:858–868. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Jin Z, Liang J, Zhao Q, Zhan L, Yang Z, Yan J, Kuang J, Cheng X and Qiu W: FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene. 40:6115–6129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, Hu S, Qiu Z, Qian M, Tian D, et al: Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 9:3879–3902. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baylin SB and Jones PA: Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 8:a0195052016. View Article : Google Scholar : PubMed/NCBI | |
Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, et al: Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 35 (Suppl 1):S276–S304. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M and Khanna KK: Mechanisms of genomic instability in breast cancer. Trends Mol Med. 25:595–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rusin M, Zajkowicz A and Butkiewicz D: Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with the instability of telomeric DNA and upregulation of BRCA1. Mech Ageing Dev. 130:528–537. 2009. View Article : Google Scholar : PubMed/NCBI | |
Falck J, Mailand N, Syljuåsen RG, Bartek J and Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 410:842–847. 2001. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka S, Huang M and Elledge SJ: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 282:1893–1897. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mas-Ponte D and Supek F: DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet. 52:958–968. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, Lin N, Tolaney SM and Wagle N: Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol. 31:387–394. 2020. View Article : Google Scholar : PubMed/NCBI | |
LeBlanc SJ, Gauer JW, Hao P, Case BC, Hingorani MM, Weninger KR and Erie DA: Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res. 46:10782–10795. 2018.PubMed/NCBI | |
Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hébert J, Drobetsky E, et al: Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA. 111:285–290. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kundert K and Fraser JS: DNA-binding proteins meet their mismatch. Nature. 587:199–200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Coïc E, Lee K, Lee CS, Kim JA, Wu Q and Haber JE: Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8:e10026302012. View Article : Google Scholar : PubMed/NCBI | |
Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chakravarti D, LaBella KA and DePinho RA: Telomeres: History, health and hallmarks of aging. Cell. 184:306–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X and Chen J: FOXK1 participates in DNA damage response by controlling 53BP1 function. Cell Rep. 32:1080182020. View Article : Google Scholar : PubMed/NCBI | |
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI | |
Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 8:286–298. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bitman-Lotan E and Orian A: Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci. 78:3141–3158. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goldberg AD, Allis CD and Bernstein E: Epigenetics: A landscape takes shape. Cell. 128:635–638. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nam AS, Chaligne R and Landau DA: Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 22:3–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Liu X and Pauklin S: 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell. 12:440–454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI | |
Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C and Fridman WH: Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene. 29:1093–1102. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
van Bilsen JHM, Dulos R, van Stee MF, Meima MY, Rouhani Rankouhi T, Neergaard Jacobsen L, Staudt Kvistgaard A, Garthoff JA, Knippels LMJ, Knipping K, et al: Seeking windows of opportunity to shape lifelong immune health: A network-based strategy to predict and prioritize markers of early life immune modulation. Front Immunol. 11:6442020. View Article : Google Scholar : PubMed/NCBI | |
Oh H and Ghosh S: NF-κB: Roles and regulation in different CD4(+) T-cell subsets. Immunol Rev. 252:41–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blanchett S, Boal-Carvalho I, Layzell S and Seddon B: NF-κB and extrinsic cell death pathways-entwined do-or-die decisions for T cells. Trends Immunol. 42:76–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Withoff S and Verma IM: Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol. 26:318–325. 2005. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Andreu P and Coussens LM: Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer Metastasis Rev. 29:309–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M and Kawanishi S: DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev. 2013:3870142013. View Article : Google Scholar : PubMed/NCBI | |
Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM and Elledge SJ: The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science. 373:1327–1335. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A and Wargo JA: The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 33:570–580. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG: Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 84:570–573. 1953. View Article : Google Scholar : PubMed/NCBI | |
Trentin JJ, Yabe Y and Taylor G: The quest for human cancer viruses. Science. 137:835–841. 1962. View Article : Google Scholar : PubMed/NCBI | |
Javier RT: Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol. 68:3917–3924. 1994. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Prieto R, de Alava E, Palomino T, Guinea J, Fernandez V, Cebrian S, LLeonart M, Cabello P, Martin P, San Roman C, et al: An association between viral genes and human oncogenic alterations: The adenovirus E1A induces the Ewing tumor fusion transcript EWS-FLI1. Nat Med. 5:1076–1079. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev. 8:588–594. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P and Mayer A: Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Fan S, Liu W, Li Y, Zhang X, Du Y and Bao H: LINC00028 regulates the development of TGFβ1-treated human tenon capsule fibroblasts by targeting miR-204-5p. Biochem Biophys Res Commun. Feb 19–2020.(Epub ahead of print). View Article : Google Scholar | |
Wittstatt J, Weider M, Wegner M and Reiprich S: MicroRNA miR-204 regulates proliferation and differentiation of oligodendroglia in culture. Glia. 68:2015–2027. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Su M and Yin Z: Construction of inflammatory directed polymer micelles and its application in acute lung injury. AAPS PharmSciTech. 21:2172020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu Z, Wang L and Zhang X: NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI | |
Greer EL and Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: Human FOX gene family (Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI | |
Koranda M, Schleiffer A, Endler L and Ammerer G: Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature. 406:94–98. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD and Morgan BA: The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 19:3750–3761. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD and Dalton S: Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol. 10:896–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ho KK, Myatt SS and Lam EW: A number of forks in the path: Cycling with FoxO. Oncogene. 27:2300–2311. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laoukili J, Stahl M and Medema RH: FoxM1: At the crossroads of ageing and cancer. Biochim Biophys Acta. 1775:92–102. 2007.PubMed/NCBI | |
Yan J, Xu L, Crawford G, Wang Z and Burgess SM: The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure. Mol Cell Biol. 26:155–168. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang J and Shang Y: Estrogen and cancer. Annu Rev Physiol. 75:225–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Douglas CC, Johnson SA and Arjmandi BH: Soy and its isoflavones: The truth behind the science in breast cancer. Anticancer Agents Med Chem. 13:1178–1187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eroles P, Bosch A, Pérez-Fidalgo JA and Lluch A: Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev. 38:698–707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nestal de Moraes G, Khongkow P, Gong C, Yao S, Gomes AR, Ji Z, Kandola N, Delbue D, Man EP, Khoo US, et al: Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer. Oncogenesis. 4:e1672015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M and Matei D: FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest. 132:e1515912022. View Article : Google Scholar : PubMed/NCBI | |
Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, Dong JT, Kucuk O, Khan GN, Huang GS, et al: Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 35 (Suppl 1):S55–S77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F and Ciuffreda L: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI | |
Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengliné E, De Gunzburg N, Payet-Bornet D, Lhermitte L, Mossafa H, et al: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: A group for research in adult acute lymphoblastic leukemia study. J Clin Oncol. 31:4333–4342. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tesio M, Trinquand A, Macintyre E and Asnafi V: Oncogenic PTEN functions and models in T-cell malignancies. Oncogene. 35:3887–3896. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Chen Y, Ye S, Yang H, Yang J and Quan J: Transcription factor forkhead box K1 regulates miR-32 expression and enhances cell proliferation in colorectal cancer. Oncol Lett. 21:4072021. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Tan W, Ye S, Zhou Y and Quan J: Analysis of the promoter region of the human miR-32 gene in colorectal cancer. Oncol Lett. 17:3743–3750. 2019.PubMed/NCBI | |
Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I, Mertens D, Bullinger L, Stilgenbauer S and Fulda S: Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer. 137:2959–2970. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, et al: Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA. 98:3062–3067. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yin XM, Oltvai ZN and Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 369:321–323. 1994. View Article : Google Scholar : PubMed/NCBI | |
Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008. View Article : Google Scholar : PubMed/NCBI | |
Asnaghi L, Calastretti A, Bevilacqua A, D'Agnano I, Gatti G, Canti G, Delia D, Capaccioli S and Nicolin A: Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene. 23:5781–5791. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Der Heide LP, Hoekman MF and Smidt MP: The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 380:297–309. 2004. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6. 1990. View Article : Google Scholar : PubMed/NCBI | |
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cao Y: Antiangiogenic cancer therapy. Semin Cancer Biol. 14:139–145. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bergers G and Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Zeng S, Zheng G, Chen D, Li P, Yang M, Luo K, Yin J, Gu Y, Zhang Z, et al: FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 40:777–790. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karaman S, Leppänen VM and Alitalo K: Vascular endothelial growth factor signaling in development and disease. Development. 145:dev1510192018. View Article : Google Scholar : PubMed/NCBI | |
Ellis LM and Hicklin DJ: VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer. 8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI | |
El Atat O, Fakih A and El-Sibai M: RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells. 8:1712019. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Cheng X, Feng H, Kuang J, Yang W, Peng C, Shen B and Qiu W: Apatinib inhibits angiogenesis via suppressing Akt/GSK3β/ANG signaling pathway in anaplastic thyroid cancer. Cell Physiol Biochem. 44:1471–1484. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, Bi J, Qiu J, Zhang D, Yan J, et al: FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 439:78–90. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wang H, Li Q, Qian Z and Shen C: Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. 46:209–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bensinger SJ and Christofk HR: New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 23:352–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palm W and Thompson CB: Nutrient acquisition strategies of mammalian cells. Nature. 546:234–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tamada M, Suematsu M and Saya H: Pyruvate kinase M2: Multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 18:5554–5561. 2012. View Article : Google Scholar : PubMed/NCBI | |
Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, Veldkamp K, Hollowell M, Zheng B, Cantley LC, et al: Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep. 19:2005–2013. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sheth SS, Castellani LW, Chari S, Wagg C, Thipphavong CK, Bodnar JS, Tontonoz P, Attie AD, Lopaschuk GD and Lusis AJ: Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. J Lipid Res. 46:123–134. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N: Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Li X, Zhang P, Chen WD, Zhang HL, Li DD, Deng R, Qian XJ, Jiao L, Ji J, et al: Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 6:72152015. View Article : Google Scholar : PubMed/NCBI | |
Kimmelman AC and White E: Autophagy and tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y: Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat Rev Mol Cell Biol. 10:458–467. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 172:650–665. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reiter F, Wienerroither S and Stark A: Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev. 43:73–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wunderlich Z and Mirny LA: Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 25:434–440. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kuroyanagi H: Fox-1 family of RNA-binding proteins. Cell Mol Life Sci. 66:3895–3907. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morgunova E and Taipale J: Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol. 47:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klemm SL, Shipony Z and Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 20:207–220. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iwafuchi-Doi M and Zaret KS: Pioneer transcription factors in cell reprogramming. Genes Dev. 28:2679–2692. 2014. View Article : Google Scholar : PubMed/NCBI | |
Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M and Zaret KS: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, Karpova TS, Ball D, Mazza D, Lavis LD, et al: Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 165:593–605. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hughes AL, Jin Y, Rando OJ and Struhl K: A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern. Mol Cell. 48:5–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
Struhl K and Segal E: Determinants of nucleosome positioning. Nat Struct Mol Biol. 20:267–273. 2013. View Article : Google Scholar : PubMed/NCBI | |
Swinstead EE, Paakinaho V, Presman DM and Hager GL: Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays. 38:1150–1157. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, et al: The interaction landscape between transcription factors and the nucleosome. Nature. 562:76–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iwafuchi-Doi M and Zaret KS: Cell fate control by pioneer transcription factors. Development. 143:1833–1837. 2016. View Article : Google Scholar : PubMed/NCBI | |
Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dann GP, Liszczak GP, Bagert JD, Müller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, et al: ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature. 548:607–611. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH and Zaret KS: The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell. 62:79–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iwafuchi M, Cuesta I, Donahue G, Takenaka N, Osipovich AB, Magnuson MA, Roder H, Seeholzer SH, Santisteban P and Zaret KS: Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet. 52:418–427. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M and Zaret KS: Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9:279–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shim EY, Woodcock C and Zaret KS: Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 12:5–10. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang Z, Li L, Chen BC, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, et al: Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell. 156:1274–1285. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T and Xie XS: Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods. 10:421–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mazza D, Abernathy A, Golob N, Morisaki T and McNally JG: A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40:e1192012. View Article : Google Scholar : PubMed/NCBI | |
Morisaki T, Müller WG, Golob N, Mazza D and McNally JG: Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun. 5:44562014. View Article : Google Scholar : PubMed/NCBI | |
Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C and Krapp A: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun. 4:17132013. View Article : Google Scholar : PubMed/NCBI | |
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M and Naef F: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e10005952011. View Article : Google Scholar : PubMed/NCBI | |
Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N and Stratton MR: A census of human cancer genes. Nat Rev Cancer. 4:177–183. 2004. View Article : Google Scholar : PubMed/NCBI |