Cancer stem cells markers in ovarian cancer: Clinical and therapeutic significance (Review)
- Authors:
- Patrycja Królewska-Daszczyńska
- Dominika Wendlocha
- Marta Smycz-Kubańska
- Sebastian Stępień
- Aleksandra Mielczarek-Palacz
-
Affiliations: Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, 40‑055 Katowice, Poland - Published online on: November 7, 2022 https://doi.org/10.3892/ol.2022.13585
- Article Number: 465
-
Copyright: © Królewska-Daszczyńska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kroeger PT Jr and Drapkin R: Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol. 29:26–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
De Leo A, Santini D, Ceccarelli C, Santandrea G, Palicelli A, Acquaviva G, Chiarucci F, Rosini F, Ravegnini G, Pession A, et al: What is new on ovarian carcinoma: Integrated morphologic and molecular analysis following the new 2020 World Health Organization classification of female genital tumors. Diagnostics (Basel). 11:6972021. View Article : Google Scholar : PubMed/NCBI | |
Kenda Suster N and Virant-Klun I: Presence and role of stem cells in ovarian cancer. World J Stem Cells. 11:383–397. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nebgen DR, Lu KH and Bast RC Jr: Novel approaches to ovarian cancer screening. Curr Oncol Rep. 21:752019. View Article : Google Scholar : PubMed/NCBI | |
Kujawa KA and Lisowska KM: Ovarian cancer-from biology to clinic. Postepy Hig Med. Dosw (online). 69:1275–1290. 2015.(In Polish). View Article : Google Scholar : PubMed/NCBI | |
Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ottevanger PB: Ovarian cancer stem cells more questions than answers. Semin Cancer Biol. 44:67–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cortez AJ, Tudrej P, Kujawa KA and Lisowska KM: Advances in ovarian cancer therapy. Cancer Chemother Pharmacol. 81:17–38. 2018. View Article : Google Scholar : PubMed/NCBI | |
Valabrega G, Scotto G, Tuninetti V, Pani A and Scaglione F: Differences in PARP inhibitors for the treatment of ovarian cancer: Mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci. 22:42032021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cai S, Han C, Banerjee A, Wu D, Cui T, Xie G, Zhang J, Zhang X, McLaughlin E, et al: ALDH1A1 contributes to PARP inhibitor resistance via enhancing DNA repair in BRCA2−/− ovarian cancer cells. Mol Cancer Ther. 19:199–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Ma S, Cao K, Zhou S, Zhao A, Li M, Qian F and Zhu C: Therapeutic approaches targeting cancer stem cells. J Cancer Res Ther. 14:1469–1475. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rich JN: Cancer stem cells: Understanding tumour hierarchy and heterogeneity. Medicine (Baltimore). 95 (Suppl 1):S2–S7. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Afify SM and Seno M: Conversion of stem cells to cancer stem cells: Undercurrent of cancer initiation. Cancers (Basel). 11:3452019. View Article : Google Scholar : PubMed/NCBI | |
Szaryńska M and Kmieć Z: The role of cancer stem cells in pathogenesis and therapy of cancer. Forum Med Rodz. 5:47–56. 2011. | |
Melzer C, von der Ohe J, Lehnert H, Ungefroren H and Hass R: Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol Cancer. 16:282017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X and Duan W: Cancer stem cell targeted therapy: Progress amid controversies. Oncotarget. 6:44191–44206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Markowska J, Kojs Z and Twardawa D: Cancer stem cells in targeted therapy. Curr Gynecol Oncol. 16:96–100. 2018. View Article : Google Scholar | |
Islam F, Qiao B, Smith RA, Gopalan V and Lam AK: Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 98:184–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F and Zoljalali Moghaddam SH: Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol. 235:790–803. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nimmakayala RK, Batra SK and Ponnusamy MP: Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer. 1871:50–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Unternaehrer JJ: Epithelial-mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev Dyn. 248:10–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bar JK, Grelewski P, Lis-Nawara A and Drobnikowska K: The role of cancer stem cells in progressive growth and resistance of ovarian cancer: True or fiction? Postepy Hig Med Dosw (Online). 69:1077–1086. 2015.(In Polish). PubMed/NCBI | |
Huang R and Rofstad EK: Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget. 8:35351–35367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM and Rueda BR: Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol. 107:92–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lathia JD and Liu H: Overview of cancer stem cells and stemness for community oncologists. Target Oncol. 12:387–399. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wan Kamarul Zaman WS, Nurul AA and Nordin F: Stem cells and cancer stem cells: The Jekyll and Hyde scenario and their implications in stem cell therapy. Biomedicines. 9:12452021. View Article : Google Scholar : PubMed/NCBI | |
Prieto-Vila M, Takahashi RU, Usuba W, Kohama I and Ochiya T: Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar : PubMed/NCBI | |
Bighetti-Trevisan RL, Sousa LO, Castilho RM and Almeida LO: Cancer stem cells: Powerful targets to improve current anticancer therapeutics. Stem Cells Int. 2019:96180652019. View Article : Google Scholar : PubMed/NCBI | |
Helbrecht I, Szymanski Ł, Fiedorowicz M, Matak D, Bartnik E, Golik P, Szczylik C and Czarnecka AM: Isolation of renal cancer stem cells. Postępy Biologii Komórki. 45:115–134. 2018. | |
Bandhavkar S: Cancer stem cells: A metastasizing menace! Cancer Med. 5:649–655. 2016. View Article : Google Scholar : PubMed/NCBI | |
Codd AS, Kanaseki T, Torigo T and Tabi Z: Cancer stem cells as targets for immunotherapy. Immunology. 153:304–314. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bapat SA, Mali AM, Koppikar CB and Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65:3025–3029. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lupia M and Cavallaro U: Ovarian cancer stem cells: Still an elusive entity? Mol Cancer. 16:642017. View Article : Google Scholar : PubMed/NCBI | |
Bregenzer ME, Horst EN, Mehta P, Novak CM, Repetto T and Mehta G: The role of cancer stem cells and mechanical forces in ovarian cancer metastasis. Cancers (Basel). 11:10082019. View Article : Google Scholar : PubMed/NCBI | |
Li SS, Ma J and Wong AST: Chemoresistance in ovarian cancer: Exploiting cancer stem cell metabolism. J Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI | |
Klemba A, Purzycka-Olewiecka JK, Wcisło G, Czarnecka AM, Lewicki S, Lesyng B, Szczylik C and Kieda C: Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemp Oncol (Pozn). 22:48–55. 2018.PubMed/NCBI | |
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI | |
Liou GY: CD133 as a regulator of cancer metastasis through the cancer stem cells. Int J Biochem Cell Biol. 106:1–7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Chen A, Song H, Tao J, Yang H and Zuo M: Prognostic value of cancer stem cell marker CD133 in ovarian cancer: A meta-analysis. Int J Clin Exp Med. 8:3080–3088. 2015.PubMed/NCBI | |
Tao Y, Li H, Huang R, Mo D, Zeng T, Fang M and Li M: Clinicopathological and prognostic significance of cancer stem cell markers in ovarian cancer patients: Evidence from 52 studies. Cell Physiol Biochem. 46:1716–1726. 2018. View Article : Google Scholar : PubMed/NCBI | |
Onisim A, Iancu M, Vlad C, Kubelac P, Fetica B, Fulop A, Achimas-Cadariu A and Achimas-Cadariu P: Expression of Nestin and CD133 in serous ovarian carcinoma. J BUON. 21:1168–1175. 2016.PubMed/NCBI | |
Ruscito I, Cacsire Castillo-Tong D, Vergote I, Ignat I, Stanske M, Vanderstichele A, Ganapathi RN, Glajzer J, Kulbe H, Trillsch F, et al: Exploring the clonal evolution of CD133/aldehyde-dehydrogenase-1 (ALDH1)-positive cancer stem-like cells from primary to recurrent high-grade serous ovarian cancer (HGSOC). A study of the ovarian cancer therapy-innovative models prolong survival (OCTIPS) consortium. Eur J Cancer. 79:214–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M and Landen CN: Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 18:869–881. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu BL, Liu SJ, Baskys A, Cheng H, Han Y, Xie C, Song H, Li J and Xin XY: Platinum sensitivity and CD133 expression as risk and prognostic predictors of central nervous system metastases in patients with epithelial ovarian cancer. BMC Cancer. 14:8292014. View Article : Google Scholar : PubMed/NCBI | |
Liu CL, Chen YJ, Fan MH, Liao YJ and Mao TL: Characteristics of CD133-sustained chemoresistant cancer stem-like cells in human ovarian carcinoma. Int J Mol Sci. 21:64672020. View Article : Google Scholar : PubMed/NCBI | |
Ween MP, Oehler MK and Ricciardelli C: Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci. 12:1009–1029. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sacks JD and Barbolina MV: Expression and function of CD44 in epithelial ovarian carcinoma. Biomolecules. 5:3051–3066. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin J and Ding D: The prognostic role of the cancer stem cell marker CD44 in ovarian cancer: A meta-analysis. Cancer Cell Int. 17:82017. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Du Y, Lu Y, Luan B, Xu C, Yu Y and Zhao H: CD44 expression predicts prognosis of ovarian cancer patients through promoting epithelial-mesenchymal transition (EMT) by regulating snail, ZEB1, and caveolin-1. Front Oncol. 9:8022019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yuan B, Zhang H and Li H: Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance. Oncol Lett. 17:5351–5360. 2019.PubMed/NCBI | |
Zhu Y, Zhang H, Zhang G, Shi Y and Huang J: Co-expression of CD44/MyD88 is a poor prognostic factor in advanced epithelial ovarian cancer. Ann Transl Med. 7:912019. View Article : Google Scholar : PubMed/NCBI | |
Zhang HF, Hu P and Fang SQ: Understanding the role of CD44V6 in ovarian cancer. Oncol Lett. 14:1989–1992. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tjhay F, Motohara T, Tayama S, Narantuya D, Fujimoto K, Guo J, Sakaguchi I, Honda R, Tashiro H and Katabuchi H: CD44 variant 6 is correlated with peritoneal dissemination and poor prognosis in patients with advanced epithelial ovarian cancer. Cancer Sci. 106:1421–1428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Motohara T, Fujimoto K, Tayama S, Narantuya D, Sakaguchi I, Tashiro H and Katabuchi H: CD44 variant 6 as a predictive biomarker for distant metastasis in patients with epithelial ovarian cancer. Obstet Gynecol. 127:1003–1011. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, et al: Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One. 5:e102772010. View Article : Google Scholar : PubMed/NCBI | |
Kuroda T, Hirohashi Y, Torigoe T, Yasuda K, Takahashi A, Asanuma H, Morita R, Mariya T, Asano T, Mizuuchi M, et al: ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis. PLoS One. 8:e651582013. View Article : Google Scholar : PubMed/NCBI | |
Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH and Lai HC: ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol. 180:1159–1169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Liu G, Xue F, Rosen DG, Xiao L, Wang X and Liu J: ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod Pathol. 22:817–823. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Li X, Holm R, Trope CG, Nesland JM and Suo Z: The expression of aldehyde dehydrogenase 1 (ALDH1) in ovarian carcinomas and its clinicopathological associations: A retrospective study. BMC Cancer. 15:5022015. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Zang C, Zhang T, Li J, Liu R, Feng F, Lv Q, Zheng L, Tian J and Sun C: Clinicopathological characteristics and prognostic value of the cancer stem cell marker ALDH1 in ovarian cancer: A meta-analysis. Onco Targets Ther. 11:1821–1831. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ayub TH, Keyver-Paik MD, Debald M, Rostamzadeh B, Thiesler T, Schröder L, Barchet W, Abramian A, Kaiser C, Kristiansen G, et al: Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer. Oncotarget. 6:16437–16448. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roy M, Connor J, Al-Niaimi A, Rose SL and Mahajan A: Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by immunohistochemistry is associated with chemo-refractoriness in patients with high-grade ovarian serous carcinoma. Hum Pathol. 73:1–6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ricci F, Bernasconi S, Porcu L, Erba E, Panini N, Fruscio R, Sina F, Torri V, Broggini M and Damia G: ALDH enzymatic activity and CD133 positivity and response to chemotherapy in ovarian cancer patients. Am J Cancer Res. 3:221–229. 2013.PubMed/NCBI | |
Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71:3991–4001. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tarhriz V, Bandehpour M, Dastmalchi S, Ouladsahebmadarek E, Zarredar H and Eyvazi S: Overview of CD24 as a new molecular marker in ovarian cancer. J Cell Physiol. 234:2134–2142. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kristiansen G, Denkert C, Schlüns K, Dahl E, Pilarsky C and Hauptmann S: CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol. 161:1215–1221. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Terai Y, Tanabe A, Ono YJ, Hayashi M, Maeda K, Fujiwara S, Ashihara K, Nakamura M, Tanaka Y, et al: CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncol Rep. 37:3189–3200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Soltész B, Lukács J, Szilágyi E, Márton É, Szilágyi Bónizs M, Penyige A, Póka R and Nagy B: Expression of CD24 in plasma, exosome and ovarian tissue samples of serous ovarian cancer patients. J Biotechnol. 298:16–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Yan X, Liu L, Jiang C and Hou S: Overexpression of the cancer stem cell marker CD117 predicts poor prognosis in epithelial ovarian cancer patients: Evidence from meta-analysis. Onco Targets Ther. 10:2951–2961. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J and Shen K: Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 91:596–602. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taskiran C, Erdem O, Onan A, Arisoy O, Acar A, Vural C, Erdem M, Ataoglu O and Guner H: The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int J Gynecol Cancer. 16:1789–1793. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bai S, Zhu W, Coffman L, Vlad A, Schwartz LE, Elishaev E, Drapkin R and Buckanovich RJ: CD105 is expressed in ovarian cancer precursor lesions and is required for metastasis to the ovary. Cancers (Basel). 11:17102019. View Article : Google Scholar : PubMed/NCBI | |
Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han HD, Lopez-Berestein G, Sood AK, Conner M, et al: Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res. 19:170–182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang J, Li H, Lu Z, Shan W, Mercado-Uribe I and Liu J: VCAM1 expression correlated with tumorigenesis and poor prognosis in high grade serous ovarian cancer. Am J Transl Res. 5:336–346. 2013.PubMed/NCBI | |
Scalici JM, Arapovic S, Saks EJ, Atkins KA, Petroni G, Duska LR and Slack-Davis JK: Mesothelium expression of vascular cell adhesion molecule-1 (VCAM-1) is associated with an unfavorable prognosis in epithelial ovarian cancer (EOC). Cancer. 123:977–984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tayama S, Motohara T, Narantuya D, Li C, Fujimoto K, Sakaguchi I, Tashiro H, Saya H, Nagano O and Katabuchi H: The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget. 8:44312–44325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spizzo G, Went P, Dirnhofer S, Obrist P, Moch H, Baeuerle PA, Mueller-Holzner E, Marth C, Gastl G and Zeimet AG: Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol. 103:483–488. 2006. View Article : Google Scholar : PubMed/NCBI | |
Woopen H, Pietzner K, Richter R, Fotopoulou C, Joens T, Braicu EI, Mellstedt H, Mahner S, Lindhofer H, Darb-Esfahani S, et al: Overexpression of the epithelial cell adhesion molecule is associated with a more favorable prognosis and response to platinum-based chemotherapy in ovarian cancer. J Gynecol Oncol. 25:221–228. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chang DY, Mercado-Uribe I and Liu J: Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma. Hum Pathol. 43:1405–1412. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bååth M, Westbom-Fremer S, Martin de la Fuente L, Ebbesson A, Davis J, Malander S, Måsbäck A, Kannisto P and Hedenfalk I: SOX2 is a promising predictor of relapse and death in advanced stage high-grade serous ovarian cancer patients with residual disease after debulking surgery. Mol Cell Oncol. 7:18050942020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen K, Li L, Li R, Zhang J and Ren W: Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway. Tumour Biol. 36:9823–9828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Czekierdowski A, Stachowicz N, Czekierdowska S, Łoziński T, Gurynowicz G and Kluz T: Prognostic significance of TEM7 and nestin expression in women with advanced high grade serous ovarian cancer. Ginekol Pol. 89:135–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Sun Y, Fei M, Zhang J, Jia Y, Gu M, Xia R, Chen S and Deng A: Expression of putative stem marker nestin and CD133 in advanced serous ovarian cancer. Neoplasma. 59:310–315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davidson B, Holth A and Dong HP: Expression of the cancer stem cell marker SSEA1 is associated with poor survival in metastatic high-grade serous carcinoma. Virchows Arch. 477:677–685. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen WC, Hsu HP, Li CY, Yang YJ, Hung YH, Cho CY, Wang CY, Weng TY and Lai MD: Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin. Int J Oncol. 49:1881–1889. 2016. View Article : Google Scholar : PubMed/NCBI | |
Connor EV, Saygin C, Braley C, Wiechert AC, Karunanithi S, Crean-Tate K, Abdul-Karim FW, Michener CM, Rose PG, Lathia JD and Reizes O: Thy-1 predicts poor prognosis and is associated with self-renewal in ovarian cancer. J Ovarian Res. 12:1122019. View Article : Google Scholar : PubMed/NCBI | |
Kim WT and Ryu CJ: Cancer stem cell surface markers on normal stem cells. BMB Rep. 50:285–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Kim D, Kim DK, Choi KU, Suh DS and Kim JH: Therapeutic strategies for targeting ovarian cancer stem cells. Int J Mol Sci. 22:50592021. View Article : Google Scholar : PubMed/NCBI | |
Barzegar Behrooz A, Syahir A and Ahmad S: CD133: Beyond a cancer stem cell biomarker. J Drug Target. 27:257–269. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI | |
Masoumi J, Jafarzadeh A, Abdolalizadeh J, Khan H, Philippe J, Mirzaei H and Mirzaei HR: Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: Challenges and prospects. Acta Pharm Sin B. 11:1721–1739. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Miao L, Liu J, Zhang J and Li Y: A promising antitumor method: Targeting CSC with immune cells modified with CAR. Front Immunol. 13:9373272022. View Article : Google Scholar : PubMed/NCBI |