1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Michailidou K, Beesley J, Lindstrom S,
Canisius S, Dennis J, Lush MJ, Maranian MJ, Bolla MK, Wang Q and
Shah M: Genome-wide association analysis of more than 120,000
individuals identifies 15 new susceptibility loci for breast
cancer. Nat Genet. 47:373–380. 2015. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Turnbull C, Ahmed S, Morrison J, Pernet D,
Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S, Healey CS, et
al: Genome-wide association study identifies five new breast cancer
susceptibility loci. Nat Genet. 42:504–507. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fehringer G, Kraft P, Pharoah PD, Eeles
RA, Chatterjee N, Schumacher FR, Schildkraut JM, Lindström S,
Brennan P, Bickeböller H, et al: Cross-cancer genome-wide analysis
of lung, ovary, breast, prostate, and colorectal cancer reveals
novel pleiotropic associations. Cancer Res. 76:5103–5114. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
The 1000 Genomes Project Consortium, . A
global reference for human genetic variation. Nature. 526:68–74.
2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li YK, Zhang XX, Yang Y, Gao J, Shi Q, Liu
SD, Fu WP and Sun C: Convergent evidence supports TH2LCRR as a
novel asthma susceptibility gene. Am J Respir Cell Mol Biol.
66:283–292. 2022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li X, Xu X, Fang J, Wang L, Mu Y, Zhang P,
Yao Z, Ma Z and Liu Z: Rs2853677 modulates snail1 binding to the
TERT enhancer and affects lung adenocarcinoma susceptibility.
Oncotarget. 7:37825–37838. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Almeida R, Ricano-Ponce I, Kumar V, Deelen
P, Szperl A, Trynka G, Gutierrez-Achury J, Kanterakis A, Westra HJ,
Franke L, et al: Fine mapping of the celiac disease-associated LPP
locus reveals a potential functional variant. Hum Mol Genet.
23:2481–2489. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hagege H, Klous P, Braem C, Splinter E,
Dekker J, Cathala G, de Laat W and Forné T: Quantitative analysis
of chromosome conformation capture assays (3C-qPCR). Nat Protoc.
2:1722–1733. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Pickrell JK, Marioni JC, Pai AA, Degner
JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y and
Pritchard JK: Understanding mechanisms underlying human gene
expression variation with RNA sequencing. Nature. 464:768–772.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Langmead B and Salzberg SL: Fast
gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Roberts A and Pachter L: Streaming
fragment assignment for real-time analysis of sequencing
experiments. Nat Methods. 10:71–73. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nie L, Vazquez AE and Yamoah EN:
Identification of transcription factor-DNA interactions using
chromatin immunoprecipitation assays. Methods Mol Biol.
493:311–321. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li XX, Peng T, Gao J, Feng JG, Wu DD, Yang
T, Zhong L, Fu WP and Sun C: Allele-specific expression identified
rs2509956 as a novel long-distance cis-regulatory SNP for SCGB1A1,
an important gene for multiple pulmonary diseases. Am J Physiol
Lung Cell Mol Physiol. 317:L456–L463. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang X, Gamble MJ, Stadler S, Cherrington
BD, Causey CP, Thompson PR, Roberson MS, Kraus WL and Coonrod SA:
Genome-wide analysis reveals PADI4 cooperates with Elk-1 to
activate c-Fos expression in breast cancer cells. PLoS Genet.
7:e10021122011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun C, Southard C, Witonsky DB, Kittler R
and Di Rienzo A: Allele-specific down-regulation of RPTOR
expression induced by retinoids contributes to climate adaptations.
PLoS Genet. 6:e10011782010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi Q, Yao XY, Wang HY, Li YJ, Zhang XX
and Sun C: Breast cancer-associated SNP rs72755295 is a
cis-regulatory variation for human EXO1. Genet Mol Biol.
45:e202104202022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feng J, Liu T, Qin B, Zhang Y and Liu XS:
Identifying ChIP-seq enrichment using MACS. Nat Protoc.
7:1728–1740. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Calo E and Wysocka J: Modification of
enhancer chromatin: What, how, and why? Mol Cell. 49:825–837. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Serra S and Chetty R: p16. J Clin Pathol.
71:853–858. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liggett WH Jr and Sidransky D: Role of the
p16 tumor suppressor gene in cancer. J Clin Oncol. 16:1197–1206.
1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Serrano M: The tumor suppressor protein
p16INK4a. Exp Cell Res. 237:7–13. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Xiong Y and Yarbrough WG: ARF
promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus
deletion impairs both the Rb and p53 tumor suppression pathways.
Cell. 92:725–734. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pomerantz J, Schreiber-Agus N, Liegeois
NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee
HW, et al: The Ink4a tumor suppressor gene product, p19Arf,
interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell.
92:713–723. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li J, Poi MJ and Tsai MD: Regulatory
mechanisms of tumor suppressor P16(INK4A) and their relevance to
cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schumacher FR, Al Olama AA, Berndt SI,
Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D,
Anokian E, Cieza-Borrella C, et al: Association analyses of more
than 140,000 men identify 63 new prostate cancer susceptibility
loci. Nat Genet. 50:928–936. 2018. View Article : Google Scholar : PubMed/NCBI
|