1
|
Zhu H, Hu B, Hua H, Liu C, Cheng Y, Guo
YH, Yao W and Qian H: Macamides: A review of structures, isolation,
therapeutics and prospects. Food Res Int. 138:1098192020.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Gonzales-Arimborgo C, Yupanqui I, Montero
E, Alarcón-Yaquetto DE, Zevallos-Concha A, Caballero L, Gasco M,
Zhao J, Khan IA and Gonzales GF: Acceptability, safety, and
efficacy of oral administration of extracts of black or red maca
(Lepidium meyenii) in adult human subjects: A randomized,
double-blind, placebo-controlled study. Pharmaceuticals (Basel).
9:492016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang Q, Jin W, Lv X, Dai P, Ao Y, Wu M,
Deng W and Yu L: Effects of macamides on endurance capacity and
anti-fatigue property in prolonged swimming mice. Pharm Biol.
54:827–834. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Alasmari M, Bӧhlke M, Kelley C, Maher T
and Pino-Figueroa A: Inhibition of fatty acid amide hydrolase
(FAAH) by macamides. Mol Neurobiol. 56:1770–1781. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu H, Wang R, Hua H, Cheng Y, Guo Y, Qian
H and Du P: The macamide relieves fatigue by acting as inhibitor of
inflammatory response in exercising mice: From central to
peripheral. Eur J Pharmacol. 917:1747582022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Apaza Ticona L, Peña-Rojas G, Andía-Ayme
V, Durán García B and Rumbero Sánchez A: Anti-glycative and
anti-inflammatory effects of macamides isolated from Tropaeolum
tuberosum in skin cells. Nat Prod Res. 36:5803–5807. 2022.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zha R, Ge EH, Guo LR, Gao Q, Lin Q, Zhou
W, Jin X, Xie W, Yin H and Liu T: A newly identified
polyunsaturated macamide alleviates dextran sulfate sodium-induced
colitis in mice. Fitoterapia. 152:1049162021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang X, Wang M, Zhou Q, Bai Y, Liu J, Yang
J, I L, Li G and Luo L: Macamide B pretreatment attenuates neonatal
hypoxic-ischemic brain damage of mice induced apoptosis and
regulates autophagy via the PI3K/AKT signaling pathway. Mol
Neurobiol. 59:2776–2798. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu Z, Li D, Zhai S, Xu H, Liu H, Ao M,
Zhao C, Jin W and Yu L: Neuroprotective effects of macamide from
maca (Lepidium meyenii Walp.) on corticosterone-induced
hippocampal impairments through its anti-inflammatory,
neurotrophic, and synaptic protection properties. Food Funct.
12:9211–9228. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fu L, Wei J, Gao Y and Chen R: Antioxidant
and antitumoral activities of isolated macamide and macaene
fractions from Lepidium meyenii (maca). Talanta.
221:1216352021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu F, Wang L and Zhou C: Lung cancer in
China: Current and prospect. Curr Opin Oncol. 33:40–46. 2021.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hirsch ER, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ruiz-Cordero R and Devine WP: Targeted
therapy and checkpoint immunotherapy in lung cancer. Surg Pathol
Clin. 13:17–33. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Khandia R and Munjal A: Interplay between
inflammation and cancer. Adv Protein Chem Struct Biol. 119:199–245.
2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hausman DM: What is cancer? Perspect Biol
Med. 62:778–784. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Obeng E: Apoptosis (programmed cell death)
and its signals-a review. Braz J Biol. 81:1133–1143. 2021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu J, Cao J, Topatana W, Juengpanich S, Li
S, Zhang B, Shen J, Cai L, Cai X and Chen M: Targeting mutant p53
for cancer therapy: Direct and indirect strategies. J Hematol
Oncol. 14:1572021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fedak EA, Adler FR, Abegglen LM and
Schiffman JD: ATM and ATR activation through crosstalk between DNA
damage response pathways. Bull Math Biol. 83:382021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bochum S, Berger S and Martens UM:
Olaparib. Recent Results Cancer Res. 211:217–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Farago AF, Yeap BY, Stanzione M, Huang YP,
Heist RS, Marcoux JP, Zhong J, Rangachari D, Barbie DA, Phat S, et
al: Combination olaparib and temozolomide in relapsed small-cell
lung cancer. Cancer Discov. 9:1372–1387. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Moore K, Colombo N, Scambia G, Kim BG,
Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke
GS, et al: Maintenance olaparib in patients with newly diagnosed
advanced ovarian cancer. N Engl J Med. 379:2495–2505. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Turan V and Okatay K: BRCA-related
ATM-mediated DNA double-strand break repair and ovarian aging. Hum
Reprod Update. 26:43–57. 2020. View Article : Google Scholar : PubMed/NCBI
|