1
|
Mittica G, Ghisoni E, Giannone G, Genta S,
Aglietta M, Sapino A and Valabrega G: PARP inhibitors in ovarian
cancer. Recent Pat Anticancer Drug Discov. 13:392–410. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Tew WP, Lacchetti C, Ellis A, Maxian K,
Banerjee S, Bookman M, Jones MB, Lee JM, Lheureux S, Liu JF, et al:
PARP inhibitors in the management of ovarian cancer: ASCO
Guideline. J Clin Oncol. 38:3468–3493. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rose M, Burgess JT, O'Byrne K, Richard DJ
and Bolderson E: PARP inhibitors: Clinical relevance, mechanisms of
action and tumor resistance. Front Cell Dev Biol. 8:5646012020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hennes ER, Dow-Hillgartner EN, Bergsbaken
JJ and Piccolo JK: PARP-inhibitor potpourri: A comparative review
of class safety, efficacy, and cost. J Oncol Pharm Pract.
26:718–729. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nigam SK: What do drug transporters really
do? Nat Rev Drug Discov. 14:29–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rives ML, Javitch JA and Wickenden AD:
Potentiating SLC transporter activity: Emerging drug discovery
opportunities. Biochem Pharmacol. 135:1–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Beis K: Structural basis for the mechanism
of ABC transporters. Biochem Soc Trans. 43:889–893. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zamek-Gliszczynski MJ, Sangha V, Shen H,
Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L and
Bendayan R; International Transporter Consortium, : Transporters in
drug development: International transporter consortium update on
emerging transporters of clinical importance. Clin Pharmacol Ther.
112:485–500. 2022. View
Article : Google Scholar : PubMed/NCBI
|
9
|
König J, Müller F and Fromm MF:
Transporters and drug-drug interactions: Important determinants of
drug disposition and effects. Pharmacol Rev. 65:944–966. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Thakkar N, Lockhart AC and Lee W: Role of
organic anion-transporting polypeptides (OATPs) in cancer therapy.
AAPS J. 17:535–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen M, Hu S, Li Y, Gibson AA, Fu Q, Baker
SD and Sparreboom A: Role of Oatp2b1 in drug absorption and
drug-drug interactions. Drug Metab Dispos. 48:419–425. 2020.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Y, Yuan J, Li Z, Wang Z, Cheng D, Du
Y, Li W, Kan Q and Zhang W: Genetic polymorphisms and function of
the organic anion-transporting polypeptide 1A2 and its clinical
relevance in drug disposition. Pharmacology. 95:201–218. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Alam K, Crowe A, Wang X, Zhang P, Ding K,
Li L and Yue W: Regulation of organic anion transporting
polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An updated
review in the context of OATP-Mediated drug-drug interactions. Int
J Mol Sci. 19:8552018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Koepsell H: Role of organic cation
transporters in drug-drug interaction. Expert Opin Drug Metab
Toxicol. 11:1619–1633. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brosseau N and Ramotar D: The human
organic cation transporter OCT1 and its role as a target for drug
responses. Drug Metab Rev. 51:389–407. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Samodelov SL, Kullak-Ublick GA, Gai Z and
Visentin M: Organic cation transporters in human physiology,
pharmacology, and toxicology. Int J Mol Sci. 21:78902020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Pochini L, Galluccio M, Scalise M, Console
L and Indiveri C: OCTN: A small transporter subfamily with great
relevance to human pathophysiology, drug discovery, and
diagnostics. SLAS Discov. 24:89–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brecht K, Schäfer AM and Meyer Zu
Schwabedissen HE: Uptake transporters of the SLC21, SLC22A, and
SLC15A families in anticancer therapy-modulators of cellular entry
or pharmacokinetics? Cancers (Basel). 12:22632020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY,
Liu HC, Richard E, Bhatnagar V and Wu W: The organic anion
transporter (OAT) family: A systems biology perspective. Physiol
Rev. 95:83–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ivanyuk A, Livio F, Biollaz J and Buclin
T: Renal drug transporters and drug interactions. Clin
Pharmacokinet. 56:825–892. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Izat N and Sahin S: Hepatic
transporter-mediated pharmacokinetic drug-drug interactions: Recent
studies and regulatory recommendations. Biopharm Drug Dispos.
42:45–77. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nies AT, Damme K, Kruck S, Schaeffeler E
and Schwab M: Structure and function of multidrug and toxin
extrusion proteins (MATEs) and their relevance to drug therapy and
personalized medicine. Arch Toxicol. 90:1555–1584. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Motohashi H and Inui K: Organic cation
transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney.
AAPS J. 15:581–588. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Locher KP: Mechanistic diversity in
ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol.
23:487–493. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Elmeliegy M, Vourvahis M, Guo C and Wang
DD: Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp
substrates: Review of clinical drug-drug interaction studies. Clin
Pharmacokinet. 59:699–714. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Suzuki K, Taniyama K, Aoyama T and
Watanabe Y: Evaluation of the role of P-glycoprotein
(P-gp)-Mediated efflux in the intestinal absorption of common
substrates with elacridar, a P-gp inhibitor, in rats. Eur J Drug
Metab Pharmacokinet. 45:385–392. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Storelli F, Anoshchenko O and Unadkat JD:
Successful prediction of human steady-state unbound brain-to-plasma
concentration ratio of P-gp substrates using the
proteomics-informed relative expression factor approach. Clin
Pharmacol Ther. 110:432–442. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mao Q and Unadkat JD: Role of the breast
cancer resistance protein (BCRP/ABCG2) in drug transport-an update.
AAPS J. 17:65–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV
and Shukla S: ABC Transporter-mediated multidrug-resistant cancer.
Adv Exp Med Biol. 1141:549–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cole SP: Targeting multidrug resistance
protein 1 (MRP1, ABCC1): Past, present, and future. Annu Rev
Pharmacol Toxicol. 54:95–117. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Järvinen E, Deng F, Kidron H and Finel M:
Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4
and BCRP. J Steroid Biochem Mol Biol. 178:99–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu X: Transporter-Mediated drug-drug
interactions and their significance. Adv Exp Med Biol.
1141:241–291. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dufour R, Daumar P, Mounetou E, Aubel C,
Kwiatkowski F, Abrial C, Vatoux C, Penault-Llorca F and Bamdad M:
BCRP and P-gp relay overexpression in triple negative basal-like
breast cancer cell line: A prospective role in resistance to
Olaparib. Sci Rep. 5:126702015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Song YK, Kim MJ, Kim MS, Lee JH, Chung SJ,
Song JS, Chae YJ and Lee KR: Role of the efflux transporters Abcb1
and Abcg2 in the brain distribution of olaparib in mice. Eur J
Pharm Sci. 173:1061772022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vaidyanathan A, Sawers L, Gannon AL,
Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1
(MDR1) induction defines a common resistance mechanism in
paclitaxel- and olaparib-resistant ovarian cancer cells. Br J
Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
McCormick A and Swaisland H: In vitro
assessment of the roles of drug transporters in the disposition and
drug-drug interaction potential of olaparib. Xenobiotica.
47:903–915. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Martins MLF, Loos NHC, Mucuk S, de Jong D,
Lebre MC, Rosing H, Tibben M, Beijnen JH and Schinkel AH:
P-Glycoprotein (ABCB1/MDR1) controls brain penetration and
intestinal disposition of the PARP1/2 inhibitor niraparib. Mol
Pharm. 18:4371–4384. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun K, Mikule K, Wang Z, Poon G,
Vaidyanathan A, Smith G, Zhang ZY, Hanke J, Ramaswamy S and Wang J:
A comparative pharmacokinetic study of PARP inhibitors demonstrates
favorable properties for niraparib efficacy in preclinical tumor
models. Oncotarget. 9:37080–37096. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Morosi L, Matteo C, Ceruti T, Giordano S,
Ponzo M, Frapolli R, Zucchetti M, Davoli E, D'Incalci M and Ubezio
P: Quantitative determination of niraparib and olaparib tumor
distribution by mass spectrometry imaging. Int J Biol Sci.
16:1363–1375. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
US Food and Drug Administration, . Label.
Available from. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208447s022s024lbl.pdfJune
20–2022
|
41
|
European Medicines Agency, . Product
information. Available from. https://www.ema.europa.eu/en/documents/product-information/zejula-epar-product-information_en.pdfJune
20–2022
|
42
|
Durmus S, Sparidans RW, van Esch A,
Wagenaar E, Beijnen JH and Schinkel AH: Breast cancer resistance
protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral
availability and brain accumulation of the PARP inhibitor rucaparib
(AG-014699). Pharm Res. 32:37–46. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liao M, Jaw-Tsai S, Beltman J, Simmons AD,
Harding TC and Xiao JJ: Evaluation of in vitro absorption,
distribution, metabolism, and excretion and assessment of drug-drug
interaction of rucaparib, an orally potent poly(ADP-ribose)
polymerase inhibitor. Xenobiotica. 50:1032–1042. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen Z, Ling K, Zhu Y, Deng L, Li Y and
Liang Z: Rucaparib antagonize multidrug resistance in cervical
cancer cells through blocking the function of ABC transporters.
Gene. 759:1450002020. View Article : Google Scholar : PubMed/NCBI
|
45
|
US Food and Drug Administration, . Label.
Available from. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209115s008lbl.pdfJune
20–2022
|
46
|
European Medicines Agency, . Product
information. Available from. https://www.ema.europa.eu/en/documents/product-information/rubraca-epar-product-information_en.pdfJune
20–2022
|
47
|
Xiao JJ, Nowak D, Ramlau R,
Tomaszewska-Kiecana M, Wysocki PJ, Isaacson J, Beltman J, Nash E,
Kaczanowski R, Arold G and Watkins S: Evaluation of drug-drug
interactions of rucaparib and CYP1A2, CYP2C9, CYP2C19, CYP3A, and
P-gp substrates in patients with an advanced solid tumor. Clin
Transl Sci. 12:58–65. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liao M, Jeziorski KG, Tomaszewska-Kiecana
M, Láng I, Jasiówka M, Skarbová V, Centkowski P, Ramlau R, Górnaś
M, Lee J, et al: A phase 1, open-label, drug-drug interaction study
of rucaparib with rosuvastatin and oral contraceptives in patients
with advanced solid tumors. Cancer Chemother Pharmacol. 88:887–897.
2021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Guney Eskiler G, Cecener G, Egeli U and
Tunca B: Talazoparib nanoparticles for overcoming multidrug
resistance in triple-negative breast cancer. J Cell Physiol.
235:6230–6245. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kizilbash SH, Gupta SK, Chang K, Kawashima
R, Parrish KE, Carlson BL, Bakken KK, Mladek AC, Schroeder MA,
Decker PA, et al: Restricted delivery of talazoparib across the
blood-brain barrier limits the sensitizing effects of PARP
inhibition on temozolomide therapy in glioblastoma. Mol Cancer
Ther. 16:2735–2746. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Elmeliegy M, Láng I, Smolyarchuk EA, Chung
CH, Plotka A, Shi H and Wang D: Evaluation of the effect of
P-glycoprotein inhibition and induction on talazoparib disposition
in patients with advanced solid tumours. Br J Clin Pharmacol.
86:771–778. 2020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yu Y, Durairaj C, Shi H and Wang DD:
Population pharmacokinetics of talazoparib in patients with
advanced cancer. J Clin Pharmacol. 60:218–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
US Food and Drug Administration, . Label.
Available from. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211651s006lbl.pdfJune
20–2022
|
54
|
European Medicines Agency, . Product
information. Available from. https://www.ema.europa.eu/en/documents/product-information/talzenna-epar-product-information_en.pdfJune
20–2022
|
55
|
Kikuchi R, Lao Y, Bow DA, Chiou WJ,
Andracki ME, Carr RA, Voorman RL and De Morais SM: Prediction of
clinical drug-drug interactions of veliparib (ABT-888) with human
renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm
Sci. 102:4426–4432. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Stodtmann S, Nuthalapati S, Eckert D,
Kasichayanula S, Joshi R, Bach BA, Mensing S, Menon R and Xiong H:
A population pharmacokinetic meta-analysis of veliparib, a PARP
Inhibitor, Across Phase 1/2/3 trials in cancer patients. J Clin
Pharmacol. 61:1195–1205. 2021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lin F, de Gooijer MC, Roig EM, Buil LC,
Christner SM, Beumer JH, Würdinger T, Beijnen JH and van Tellingen
O: ABCB1, ABCG2, and PTEN determine the response of glioblastoma to
temozolomide and ABT-888 therapy. Clin Cancer Res. 20:2703–2713.
2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Chang L, Hou Y, Zhu L, Wang Z, Chen G, Shu
C and Liu Y: Veliparib overcomes multidrug resistance in liver
cancer cells. Biochem Biophys Res Commun. 521:596–602. 2020.
View Article : Google Scholar : PubMed/NCBI
|
59
|
van Leeuwen RW, van Gelder T, Mathijssen
RH and Jansman FG: Drug-drug interactions with tyrosine-kinase
inhibitors: A clinical perspective. Lancet Oncol. 15:e315–e326.
2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhao D, Long X and Wang J: Dose adjustment
of poly (ADP-Ribose) Polymerase inhibitors in patients with hepatic
or renal impairment. Drug Des Devel Ther. 16:3947–3955. 2022.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Koinuma K, Tsuchitani T, Imaoka A,
Akiyoshi T and Ohtani H: Relative contributions of metabolic
enzymes to systemic elimination can be estimated from clinical DDI
studies: Validation using an in silico approach. Int J Clin
Pharmacol Ther. 59:231–238. 2021. View Article : Google Scholar : PubMed/NCBI
|
62
|
Yu J, Petrie ID, Levy RH and
Ragueneau-Majlessi I: Mechanisms and clinical significance of
pharmacokinetic-based drug-drug interactions with drugs approved by
the U.S. Food and Drug Administration in 2017. Drug Metab Dispos.
47:135–144. 2019. View Article : Google Scholar : PubMed/NCBI
|
63
|
Choi YH and Yu AM: ABC transporters in
multidrug resistance and pharmacokinetics, and strategies for drug
development. Curr Pharm Des. 20:793–807. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Chen Z, Shi T, Zhang L, Zhu P, Deng M,
Huang C, Hu T, Jiang L and Li J: Mammalian drug efflux transporters
of the ATP binding cassette (ABC) family in multidrug resistance: A
review of the past decade. Cancer Lett. 370:153–164. 2016.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Lombard AP, Liu C, Armstrong CM, D'Abronzo
LS, Lou W, Chen H, Dall'Era M, Ghosh PM, Evans CP and Gao AC:
Overexpressed ABCB1 induces olaparib-taxane cross-resistance in
advanced prostate cancer. Transl Oncol. 12:871–878. 2019.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Lawlor D, Martin P, Busschots S, Thery J,
O'Leary JJ, Hennessy BT and Stordal B: PARP Inhibitors as
P-glyoprotein Substrates. J Pharm Sci. 103:1913–1920. 2014.
View Article : Google Scholar : PubMed/NCBI
|