
Prostate cancer bone metastases biology and clinical management (Review)
- Authors:
- Emily Archer Goode
- Ning Wang
- Jennifer Munkley
-
Affiliations: Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK, The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK, Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK - Published online on: March 8, 2023 https://doi.org/10.3892/ol.2023.13749
- Article Number: 163
-
Copyright: © Archer Goode et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Rawla P: Epidemiology of prostate cancer. World J Oncol. 10:63–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pernar CH, Ebot EM, Wilson KM and Mucci LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 8:a0303612018. View Article : Google Scholar : PubMed/NCBI | |
Vietri MT, D'Elia G, Caliendo G, Resse M, Casamassimi A, Passariello L, Albanese L, Cioffi M and Molinari AM: Hereditary prostate cancer: Genes related, target therapy and prevention. Int J Mol Sci. 22:37532021. View Article : Google Scholar : PubMed/NCBI | |
Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, et al: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet. 389:815–822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Descotes JL: Diagnosis of prostate cancer. Asian J Urol. 6:129–136. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wadosky KM and Koochekpour S: Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 7:64447–64470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chi K, Hotte SJ, Joshua AM, North S, Wyatt AW, Collins LL and Saad F: Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann Oncol. 26:2044–2056. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah H and Vaishampayan U: Therapy of advanced prostate cancer: Targeting the androgen receptor axis in earlier lines of treatment. Target Oncol. 13:679–689. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al: EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014. View Article : Google Scholar : PubMed/NCBI | |
Antonov P, Raycheva G and Popov V: Unexpected long-term survival in an adult patient with metastatic prostate cancer. Urol Case Rep. 37:1016342021. View Article : Google Scholar : PubMed/NCBI | |
Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC and Mihatsch MJ: Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum Pathol. 31:578–583. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Kuai Y, Zhu R, Zhou C, Tao Y, Han W and Chen Q: Prognosis of prostate cancer and bone metastasis pattern of patients: A SEER-based study and a local hospital based study from China. Sci Rep. 10:91042020. View Article : Google Scholar : PubMed/NCBI | |
Nieder C, Haukland E, Pawinski A and Dalhaug A: Pathologic fracture and metastatic spinal cord compression in patients with prostate cancer and bone metastases. BMC Urol. 10:232010. View Article : Google Scholar : PubMed/NCBI | |
Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH and Christakos S: Vitamin D, calcium homeostasis and aging. Bone Res. 4:160412016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suva LJ, Washam C, Nicholas RW and Griffin RJ: Bone metastasis: Mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 7:208–218. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nordstrand A, Bovinder Ylitalo E, Thysell E, Jernberg E, Crnalic S, Widmark A, Bergh A, Lerner UH and Wikström P: Bone cell activity in clinical prostate cancer bone metastasis and its inverse relation to tumor cell androgen receptor activity. Int J Mol Sci. 19:12232018. View Article : Google Scholar : PubMed/NCBI | |
Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N and Ima-Nirwana S: Prostate cancer and bone metastases: The underlying mechanisms. Int J Mol Sci. 20:25872019. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 133:571–573. 1889. View Article : Google Scholar | |
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L and Goncalves F: Bone metastases: An overview. Oncol Rev. 11:3212017.PubMed/NCBI | |
Mundy GR: Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2:584–593. 2002. View Article : Google Scholar : PubMed/NCBI | |
Conti G, La Torre G, Cicalese V, Micheletti G, Ludovico MG, Vestita GD, Cottonaro G, Introini C and Cecchi M: Prostate cancer metastases to bone: Observational study for the evaluation of clinical presentation, course and treatment patterns. Presentation of the METAURO protocol and of patient baseline features. Arch Ital Urol Androl. 80:59–64. 2008.PubMed/NCBI | |
Kitajima K, Yamamoto S, Kawanaka Y, Komoto H, Shimatani K, Hanasaki T, Taguchi M, Nagasawa S, Yamada Y, Kanematsu A and Yamakado K: Assessment of the viability and treatment response of bone metastases in patients with metastatic castration-resistant prostate cancer using choline PET/CT. Medicine (Baltimore). 100:e262062021. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Yu-Lee LY and Lin SH: Osteoblastic factors in prostate cancer bone metastasis. Curr Osteoporos Rep. 16:642–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL and Ott SM: Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol. 180:1154–1160. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE and Delmas PD: Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer. 82:858–864. 2000. View Article : Google Scholar : PubMed/NCBI | |
Khan MA and Partin AW: Bisphosphonates in metastatic prostate cancer. Rev Urol. 5:204–206. 2003.PubMed/NCBI | |
Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI | |
Cheville JC, Tindall D, Boelter C, Jenkins R, Lohse CM, Pankratz VS, Sebo TJ, Davis B and Blute ML: Metastatic prostate carcinoma to bone: Clinical and pathologic features associated with cancer-specific survival. Cancer. 95:1028–1036. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ribelli G, Simonetti S, Iuliani M, Rossi E, Vincenzi B, Tonini G, Pantano F and Santini D: Osteoblasts promote prostate cancer cell proliferation through androgen receptor independent mechanisms. Front Oncol. 11:7898852021. View Article : Google Scholar : PubMed/NCBI | |
Kirschenbaum A, Liu XH, Yao S, Leiter A and Levine AC: Prostatic acid phosphatase is expressed in human prostate cancer bone metastases and promotes osteoblast differentiation. Ann N Y Acad Sci. 1237:64–70. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kirschenbaum A, Izadmehr S, Yao S, O'Connor-Chapman KL, Huang A, Gregoriades EM, Yakar S and Levine AC: Prostatic acid phosphatase alters the RANKL/OPG system and induces osteoblastic prostate cancer bone metastases. Endocrinology. 157:4526–4533. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Sircar K, Aprikian A, Potti A, Goltzman D and Rabbani SA: Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer. 107:289–298. 2006. View Article : Google Scholar : PubMed/NCBI | |
Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K and Suda T: Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 141:3478–3484. 2000. View Article : Google Scholar : PubMed/NCBI | |
Corey E, Brown LG, Kiefer JA, Quinn JE, Pitts TE, Blair JM and Vessella RL: Osteoprotegerin in prostate cancer bone metastasis. Cancer Res. 65:1710–1718. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M and Vessella RL: Osteoprotegerin and rank ligand expression in prostate cancer. Urology. 57:611–616. 2001. View Article : Google Scholar : PubMed/NCBI | |
Holen I, Croucher PI, Hamdy FC and Eaton CL: Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res. 62:1619–1623. 2002.PubMed/NCBI | |
Chiao JW, Moonga BS, Yang YM, Kancherla R, Mittelman A, Wu-Wong JR and Ahmed T: Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption. Br J Cancer. 83:360–365. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Yang J, Peleg S, Sikes CR, Kreimann EL, Daliani D, Olive M, Raymond KA, Janus TJ, Logothetis CJ, et al: Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res. 9:2587–2597. 2003.PubMed/NCBI | |
Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL, Padley RJ, Garrett IR, Chirgwin JM and Guise TA: A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA. 100:10954–10959. 2003. View Article : Google Scholar : PubMed/NCBI | |
Valta MP, Tuomela J, Bjartell A, Valve E, Väänänen HK and Härkönen P: FGF-8 is involved in bone metastasis of prostate cancer. Int J Cancer. 123:22–31. 2008. View Article : Google Scholar : PubMed/NCBI | |
Quiroz-Munoz M, Izadmehr S, Arumugam D, Wong B, Kirschenbaum A and Levine AC: Mechanisms of osteoblastic bone metastasis in prostate cancer: Role of prostatic acid phosphatase. J Endocr Soc. 3:655–664. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ikuerowo SO, Omisanjo OA, Bioku MJ, Ajala MO, Mordi VP and Esho JO: Prevalence and characteristics of prostate cancer among participants of a community-based screening in Nigeria using serum prostate specific antigen and digital rectal examination. Pan Afr Med J. 15:1292013. View Article : Google Scholar : PubMed/NCBI | |
Idowu BM: Prostate carcinoma presenting with diffuse osteolytic metastases and supraclavicular lymphadenopathy mimicking multiple myeloma. Clin Case Rep. 6:253–257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maharaj B, Kalideen JM, Leary WP and Pudifin DJ: Carcinoma of the prostate with multiple osteolytic metastases simulating multiple myeloma. A case report. S Afr Med J. 70:227–228. 1986.PubMed/NCBI | |
Fukuoka H, Ishibashi Y, Masuda M, Gotoh A, Murai T and Kitamura H: A case of prostatic carcinoma with osteolytic bone metastases. Hinyokika Kiyo. 34:1805–1809. 1988.(In Japanese). PubMed/NCBI | |
Migita T, Maeda K and Ogata N: A case of prostate cancer associated with osteolytic bone metastases. Hinyokika Kiyo. 45:371–374. 1999.(In Japanese). PubMed/NCBI | |
Rajendiran G, Green L and Chhabra G: A rare presentation of prostate cancer with diffuse osteolytic metastases and PSA of 7242 ng/ml. Int J Case Rep Image. 2:16–20. 2011. View Article : Google Scholar | |
Segamwenge IL, Mgori NK, Abdallahyussuf S, Mukulu CN, Nakangombe P, Ngalyuka PK and Kidaaga F: Cancer of the prostate presenting with diffuse osteolytic metastatic bone lesions: A case report. J Med Case Rep. 6:4252012. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Karunanithi S, Singh Dhull V, Jain S, Bal C and Kumar R: Prostate cancer with lytic bone metastases: 18F-fluorodeoxyglucose positron emission tomography-computed tomography for diagnosis and monitoring response to medical castration therapy. Indian J Nucl Med. 28:178–179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bird VY, Domino PM, Sutkowski R, Stillings SA and Trejo-Lopez JA: Prostate cancer with metastatic lytic bone lesions: Positive bone scan post docetaxel chemotherapy in the setting of clinically successful treatment. Urol Case Rep. 6:12–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rummel K, Benson J and Roller L: Prostate adenocarcinoma with osteolytic metastases: Case report and review of the literature. Radiol Case Rep. 16:3565–3568. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bryden AAG, Hoyland JA, Freemont AJ, Clarke NW and George NJR: Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases. Br J Cancer. 86:322–325. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD and Nissenson RA: PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res. 19:235–244. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ongkeko WM, Burton D, Kiang A, Abhold E, Kuo SZ, Rahimy E, Yang M, Hoffman RM, Wang-Rodriguez J and Deftos LJ: Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One. 9:e858032014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhi X, Wang J and Su J: RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 6:342018. View Article : Google Scholar : PubMed/NCBI | |
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al: Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 561:195–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Xia F, Wei Y and Wei X: Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res. 8:302020. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Xu X, Li B, Brown E, Farris AB, Sun SY and Yang JJ: Prostate cancer metastatic to bone has higher expression of the calcium-sensing receptor (CaSR) than primary prostate cancer. Receptors Clin Investig. 1:e2702014.PubMed/NCBI | |
Kuchimaru T, Hoshino T, Aikawa T, Yasuda H, Kobayashi T, Kadonosono T and Kizaka-Kondoh S: Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulin-like growth factor and hypoxia. Cancer Sci. 105:553–559. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russo S, Scotto di Carlo F and Gianfrancesco F: The osteoclast traces the route to bone tumors and metastases. Front Cell Dev Biol. 10:8863052022. View Article : Google Scholar : PubMed/NCBI | |
Hadjidakis DJ and Androulakis II: Bone remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schwartz MA, Schaller MD and Ginsberg MH: Integrins: Emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 11:549–599. 1995. View Article : Google Scholar : PubMed/NCBI | |
Schneider JG, Amend SR and Weilbaecher KN: Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 48:54–65. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 7:7343–7353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Doyle AD, Shinsato Y, Wang S, Bodendorfer MA, Zheng M and Yamada KM: Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile winch. Dev Cell. 52:631–646.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Liu XD, Chen ZY, Zhu J, Xiong Y, Li K, Dong JH and Li X: Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res. 13:3115–3124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun LC, Luo J, Mackey LV, Fuselier JA and Coy DH: A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett. 246:157–166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Somanath PR, Malinin NL and Byzova TV: Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis. 12:177–185. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, Chen R, Xue T, Chen J, Gao D, et al: Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun. 444:427–432. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Xu M, Zhang L, Qu L and Liu X: Role of αVβ3 in prostate cancer: Metastasis initiator and important therapeutic target. Onco Targets Ther. 13:7411–7422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brown NF and Marshall JF: Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers (Basel). 11:12212019. View Article : Google Scholar : PubMed/NCBI | |
Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y and Johnson KR: Cadherin switching. J Cell Sci. 121:727–735. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hussain M, Le Moulec S, Gimmi C, Bruns R, Straub J and Miller K; PERSEUS Study Group, : Differential effect on bone lesions of targeting integrins: Randomized phase II trial of abituzumab in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 22:3192–3200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gheldof A and Berx G: Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 116:317–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bryden AAG, Hoyland JA, Freemont AJ, Clarke NW, Schembri Wismayer D and George NJR: E-cadherin and beta-catenin are down-regulated in prostatic bone metastases. BJU Int. 89:400–403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE and Welén K: N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer. 17:469–479. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cui Y and Yamada S: N-cadherin dependent collective cell invasion of prostate cancer cells is regulated by the N-terminus of α-catenin. PLoS One. 8:e550692013. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, Liu S, Wei Q, Duan R, Guo J and Yang L: N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 9:e0021382021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T, Fazli L, Wada R, Huang J, Vessella RL, et al: Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 16:1414–1420. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reily C, Stewart TJ, Renfrow MB and Novak J: Glycosylation in health and disease. Nat Rev Nephrol. 15:346–366. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garnham R, Scott E, Livermore KE and Munkley J: ST6GAL1: A key player in cancer. Oncol Lett. 18:983–989. 2019.PubMed/NCBI | |
Bindeman WE and Fingleton B: Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev. 41:107–129. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET and Hall CL: Integrin alpha2beta 1 (α2β1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis. 30:569–578. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Slambrouck S, Groux-Degroote S, Krzewinski-Recchi MA, Cazet A, Delannoy P and Steelant WF: Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells. Biosci Rep. 34:e001382014. View Article : Google Scholar : PubMed/NCBI | |
Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, et al: Selectin ligand sialyl-Lewis × antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 71:7683–7693. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barthel SR, Gavino JD, Wiese GK, Jaynes JM, Siddiqui J and Dimitroff CJ: Analysis of glycosyltransferase expression in metastatic prostate cancer cells capable of rolling activity on microvascular endothelial (E)-selectin. Glycobiology. 18:806–817. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Li T, Mo Z, Hu Y, Yi Q, He R, Zhu X, Zhou X, She S and Chen Y: Overexpression of the galectin-3 during tumor progression in prostate cancer and its clinical implications. Int J Clin Exp Pathol. 11:839–846. 2018.PubMed/NCBI | |
Nakajima K, Kho DH, Yanagawa T, Harazono Y, Hogan V, Chen W, Ali-Fehmi R, Mehra R and Raz A: Galectin-3 cleavage alters bone remodeling: different outcomes in breast and prostate cancer skeletal metastasis. Cancer Res. 76:1391–1402. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pouliot N, Pearson HB and Burrows A: Investigating metastasis using in vitro platforms. Madame Curie Bioscience Database [Internet] Austin (TX): Landes Bioscience; 2013 | |
Hao J, Madigan MC, Khatri A, Power CA, Hung TT, Beretov J, Chang L, Xiao W, Cozzi PJ, Graham PH, et al: In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One. 7:e407162012. View Article : Google Scholar : PubMed/NCBI | |
Li W, Qian L, Lin J, Huang G, Hao N, Wei X, Wang W and Liang J: CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget. 8:65143–65151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Li Q, Wu M, Nie C, Xu H and Wang L: CD147 promotes epithelial-mesenchymal transition of prostate cancer cells via the Wnt/β-catenin pathway. Exp Ther Med. 20:3154–3160. 2020.PubMed/NCBI | |
Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo S and Deng CX: Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jasuja H, Kar S, Katti DR and Katti KS: Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed. Biofabrication. 13:2021. View Article : Google Scholar : PubMed/NCBI | |
Fong ELS, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM and Farach-Carson MC: A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials. 77:164–172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, et al: Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med. 9:734–745. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ and O'Driscoll CM: The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials. 66:53–66. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katti KS, Jasuja H, Kar S and Katti DR: Nanostructured biomaterials for in vitro models of bone metastasis cancer. Curr Opin Biomed Eng. 17:1002542021. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Neves S, Ribeiro N, Graça I, Jerónimo C, Sousa SR and Monteiro FJ: Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold. J Biomed Mater Res A. 105:2035–2046. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, Tombal B and Gillessen S; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 31:1119–1134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kuppen MCP, Westgeest HM, van den Eertwegh AJM, van Moorselaar RJA, van Oort IM, Tascilar M, Mehra N, Lavalaye J, Somford DM, Aben KKH, et al: Symptomatic skeletal events and the use of bone health agents in a real-world treated metastatic castration resistant prostate cancer population: Results from the CAPRI-study in the netherlands. Clin Genitourin Cancer. 20:43–52. 2022. View Article : Google Scholar : PubMed/NCBI | |
Benford HL, McGowan NW, Helfrich MH, Nuttall ME and Rogers MJ: Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone. 28:465–473. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gralow J and Tripathy D: Managing metastatic bone pain: The role of bisphosphonates. J Pain Symptom Manage. 33:462–472. 2007. View Article : Google Scholar : PubMed/NCBI | |
Percival RC, Urwin GH, Harris S, Yates AJ, Williams JL, Beneton M and Kanis JA: Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol. 13:41–49. 1987.PubMed/NCBI | |
Clarke NW, McClure J and George NJ: Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol. 68:74–80. 1991. View Article : Google Scholar : PubMed/NCBI | |
Berruti A, Dogliotti L, Tucci M, Tarabuzzi R, Fontana D and Angeli A: Metabolic bone disease induced by prostate cancer: Rationale for the use of bisphosphonates. J Urol. 166:2023–2031. 2001. View Article : Google Scholar : PubMed/NCBI | |
Small EJ, Smith MR, Seaman JJ, Petrone S and Kowalski MO: Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol. 21:4277–4284. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhao C, Liu B, Liu H and Wang L: Analgesia and curative effect of pamidronate disodium combined with chemotherapy on elderly patients with advanced metastatic bone cancer. Oncol Lett. 18:771–775. 2019.PubMed/NCBI | |
Widler L, Jaeggi KA, Glatt M, Müller K, Bachmann R, Bisping M, Born AR, Cortesi R, Guiglia G, Jeker H, et al: Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem. 45:3721–3738. 2002. View Article : Google Scholar : PubMed/NCBI | |
Finianos A and Aragon-Ching JB: Zoledronic acid for the treatment of prostate cancer. Expert Opin Pharmacother. 20:657–666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kamba T, Kamoto T, Maruo S, Kikuchi T, Shimizu Y, Namiki S, Fujimoto K, Kawanishi H, Sato F, Narita S, et al: A phase III multicenter, randomized, controlled study of combined androgen blockade with versus without zoledronic acid in prostate cancer patients with metastatic bone disease: Results of the ZAPCA trial. Int J Clin Oncol. 22:166–173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weinfurt KP, Anstrom KJ, Castel LD, Schulman KA and Saad F: Effect of zoledronic acid on pain associated with bone metastasis in patients with prostate cancer. Ann Oncol. 17:986–989. 2006. View Article : Google Scholar : PubMed/NCBI | |
NICE. Prostate cancer, . Diagnosis and management. 2019.15/12/2021 [cited 2022 21/11/2022]; Available from:. https://www.nice.org.uk/guidance/ng131/chapter/Recommendations | |
Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Namjoshi M, Wu EQ, Parikh K, Diener M, Yu AP, Guo A and Culver KW: Economic evaluation of denosumab compared with zoledronic acid in hormone-refractory prostate cancer patients with bone metastases. J Manag Care Pharm. 17:621–643. 2011.PubMed/NCBI | |
NICE, . Denosumab is not recommended for preventing skeletal-related events in adults with bone metastases from prostate cancer. 2012.Available from. https://www.nice.org.uk/donotdo/denosumab-is-not-recommended-for-preventing-skeletalrelated-events-inadults-with-bone-metastases-from-prostate-cancer | |
Smart JG: The use of P32 in the treatment of severe pain from bone metastases of carcinoma of the prostate1. Br J Urol. 37:139–147. 1965. View Article : Google Scholar : PubMed/NCBI | |
Porter AT, McEwan AJ, Powe JE, Reid R, McGowan DG, Lukka H, Sathyanarayana JR, Yakemchuk VN, Thomas GM, Erlich LE, et al: Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 25:805–813. 1993. View Article : Google Scholar : PubMed/NCBI | |
Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, Bertrand A, Ahmann FR, Orihuela E, Reid RH, et al: Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: A double-blind placebo-controlled clinical trial. J Clin Oncol. 16:1574–1581. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, Kotler JA, Freeman LM and Olivier P; Quadramet 424Sm10/11 Study Group, : Samarium-153-lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 63:940–945. 2004. View Article : Google Scholar : PubMed/NCBI | |
Powers E, Karachaliou GS, Kao C, Harrison MR, Hoimes CJ, George DJ, Armstrong AJ and Zhang T: Novel therapies are changing treatment paradigms in metastatic prostate cancer. J Hematol Oncol. 13:1442020. View Article : Google Scholar : PubMed/NCBI | |
Terrisse S, Karamouza E, Parker CC, Sartor AO, James ND, Pirrie S, Collette L, Tombal BF, Chahoud J, Smeland S, et al: Overall survival in men with bone metastases from castration-resistant prostate cancer treated with bone-targeting radioisotopes: A meta-analysis of individual patient data from randomized clinical trials. JAMA Oncol. 6:206–216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Den RB, George D, Pieczonka C and McNamara M: Ra-223 treatment for bone metastases in castrate-resistant prostate cancer: Practical management issues for patient selection. Am J Clin Oncol. 42:399–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et al: Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 369:213–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nilsson S, Cislo P, Sartor O, Vogelzang NJ, Coleman RE, O'Sullivan JM, Reuning-Scherer J, Shan M, Zhan L and Parker C: Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann Oncol. 27:868–874. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gutman EB, Sproul EE and Gutman AB: Significance of increased phosphatase activity of bone at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer. 28:485–495. 1936. View Article : Google Scholar | |
Ozu C, Nakashima J, Horiguchi Y, Oya M, Ohigashi T and Murai M: Prediction of bone metastases by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int J Urol. 15:419–422. 2008. View Article : Google Scholar : PubMed/NCBI | |
Larson SR, Chin J, Zhang X, Brown LG, Coleman IM, Lakely B, Tenniswood M, Corey E, Nelson PS, Vessella RL and Morrissey C: Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment. Clin Exp Metastasis. 31:247–256. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wargowski E, Johnson LE, Eickhoff JC, Delmastro L, Staab MJ, Liu G and McNeel DG: Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using sipuleucel-T and a DNA vaccine. J Immunother Cancer. 6:212018. View Article : Google Scholar : PubMed/NCBI | |
Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N and Frohlich MW: Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 115:3670–3679. 2009. View Article : Google Scholar : PubMed/NCBI | |
Marshall CH, Fu W, Wang H, Park JC, DeWeese TL, Tran PT, Song DY, King S, Afful M, Hurrelbrink J, et al: Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bone-metastatic castration-resistant prostate cancer. Clin Cancer Res. 27:1623–1630. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kasperk CH, Börcsök I, Schairer HU, Schneider U, Nawroth PP, Niethard FU and Ziegler R: Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int. 60:368–374. 1997. View Article : Google Scholar : PubMed/NCBI | |
Montironi R, Mazzucchelli R, Barbisan F, Stramazzotti D, Santinelli A, Lòpez Beltran A, Cheng L, Montorsi F and Scarpelli M: Immunohistochemical expression of endothelin-1 and endothelin-A and endothelin-B receptors in high-grade prostatic intraepithelial neoplasia and prostate cancer. Eur Urol. 52:1682–1690. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vogelzang NJ, Nelson JB, Schulman CC, Dearnaley DP, Saad F, Sleep DJ, Isaacson D and Carducci MA: Meta-analysis of clinical trials of atrasentan 10 mg in metastatic hormone-refractory prostate cancer. J Clin Oncol. 23 (Suppl 16):S45632005. View Article : Google Scholar : PubMed/NCBI | |
Carducci MA, Saad F, Abrahamsson PA, Dearnaley DP, Schulman CC, North SA, Sleep DJ, Isaacson JD and Nelson JB; Atrasentan Phase III Study Group Institutions, : A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer. 110:1959–1966. 2007. View Article : Google Scholar : PubMed/NCBI | |
Drake JM, Danke JR and Henry MD: Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol Ther. 9:607–614. 2010. View Article : Google Scholar : PubMed/NCBI | |
Quinn DI, Tangen CM, Hussain M, Lara PN Jr, Goldkorn A, Moinpour CM, Garzotto MG, Mack PC, Carducci MA, Monk JP, et al: Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): A randomised phase 3 trial. Lancet Oncol. 14:893–900. 2013. View Article : Google Scholar : PubMed/NCBI | |
Teo MY, Rathkopf DE and Kantoff P: Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Selvaggi G and Scagliotti GV: Management of bone metastases in cancer: A review. Crit Rev Oncol Hematol. 56:365–378. 2005. View Article : Google Scholar : PubMed/NCBI | |
Keller ET and Brown J: Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem. 91:718–729. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li D, Lv H, Hao X, Hu B and Song Y: Prognostic value of serum alkaline phosphatase in the survival of prostate cancer: Evidence from a meta-analysis. Cancer Manag Res. 10:3125–3139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karhade AV, Thio QCBS, Kuverji M, Ogink PT, Ferrone ML and Schwab JH: Prognostic value of serum alkaline phosphatase in spinal metastatic disease. Br J Cancer. 120:640–646. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tucci M, Mosca A, Lamanna G, Porpiglia F, Terzolo M, Vana F, Cracco C, Russo L, Gorzegno G, Tampellini M, et al: Prognostic significance of disordered calcium metabolism in hormone-refractory prostate cancer patients with metastatic bone disease. Prostate Cancer Prostatic Dis. 12:94–99. 2009. View Article : Google Scholar : PubMed/NCBI | |
Skinner HG and Schwartz GG: Serum calcium and incident and fatal prostate cancer in the national health and nutrition examination survey. Cancer Epidemiol Biomarkers Prev. 17:2302–3205. 2008. View Article : Google Scholar : PubMed/NCBI | |
Francini G, Petrioli R, Gonnelli S, Correale P, Pozzessere D, Marsili S, Montagnani A, Lucani B, Rossi S, Monaco R, et al: Urinary calcium excretion in the monitoring of bone metastases from prostatic carcinoma. Cancer. 92:1468–1474. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, Loening SA and Schnorr D: Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: Diagnostic and prognostic implications. Int J Cancer. 111:783–791. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cooper EH, Whelan P and Purves D: Bone alkaline phosphatase and prostate-specific antigen in the monitoring of prostate cancer. Prostate. 25:236–242. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kylmälä T, Tammela TL, Risteli L, Risteli J, Kontturi M and Elomaa I: Type I collagen degradation product (ICTP) gives information about the nature of bone metastases and has prognostic value in prostate cancer. Br J Cancer. 71:1061–1064. 1995. View Article : Google Scholar : PubMed/NCBI | |
Maeda H, Koizumi M, Yoshimura K, Yamauchi T, Kawai T and Ogata E: Correlation between bone metabolic markers and bone scan in prostatic cancer. J Urol. 157:539–543. 1997. View Article : Google Scholar : PubMed/NCBI | |
Klepzig M, Jonas D and Oremek GM: Procollagen type 1 amino-terminal propeptide: A marker for bone metastases in prostate carcinoma. Anticancer Res. 29:671–673. 2009.PubMed/NCBI | |
Sundling KE and Lowe AC: Circulating tumor cells: Overview and opportunities in cytology. Adv Anat Pathol. 26:56–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Helo P, Cronin AM, Danila DC, Wenske S, Gonzalez-Espinoza R, Anand A, Koscuiszka M, Väänänen RM, Pettersson K, Chun FK, et al: Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: Concordance with CellSearch assay and association with bone metastases and with survival. Clin Chem. 55:765–773. 2009. View Article : Google Scholar : PubMed/NCBI | |
Josefsson A, Larsson K, Månsson M, Björkman J, Rohlova E, Åhs D, Brisby H, Damber JE and Welén K: Circulating tumor cells mirror bone metastatic phenotype in prostate cancer. Oncotarget. 9:29403–29413. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saxby H, Mikropoulos C and Boussios S: An update on the prognostic and predictive serum biomarkers in metastatic prostate cancer. Diagnostics (Basel). 10:5492020. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, Zhu YP, Shen YJ, Shi GH and Ye DW: Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 71:326–331. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y and Saini S: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78:1833–1844. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tinay I, Tan M, Gui B, Werner L, Kibel AS and Jia L: Functional roles and potential clinical application of miRNA-345-5p in prostate cancer. Prostate. 78:927–937. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roest HP, IJzermans JNM and van der Laan LJW: Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol. 21:482021. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y and Chang S: Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol. 50:2193–2200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet. 63:195–205. 2018. View Article : Google Scholar : PubMed/NCBI | |
Casanova-Salas I, Rubio-Briones J, Fernández-Serra A and López-Guerrero JA: miRNAs as biomarkers in prostate cancer. Clin Transl Oncol. 14:803–811. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Qin XJ, Cao DL, Zhu Y, Yao XD, Zhang SL, Dai B and Ye DW: An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl. 15:231–235. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nordby Y, Richardsen E, Ness N, Donnem T, Patel HRH, Busund LT, Bremnes RM and Andersen S: High miR-205 expression in normal epithelium is associated with biochemical failure-an argument for epithelial crosstalk in prostate cancer? Sci Rep. 7:163082017. View Article : Google Scholar : PubMed/NCBI | |
Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A and Ceder Y: Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One. 8:e724002013. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Yang HZ, Dong BJ, Zou HB, Zhou Y, Kong XM and Huang YR: Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia. Oncotarget. 5:9169–9182. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, Pecci R, Muto G, Collura D, Bedini R, et al: A microRNA code for prostate cancer metastasis. Oncogene. 35:1180–1192. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Wu B, Huang S, Peng X, Li X, Huang X, Zhou W, Xie P and He P: Downregulation of miR-505-3p predicts poor bone metastasis-free survival in prostate cancer. Oncol Rep. 41:57–66. 2019.PubMed/NCBI | |
Olivan M, Garcia M, Suárez L, Guiu M, Gros L, Méndez O, Rigau M, Reventós J, Segura MF, de Torres I, et al: Loss of microRNA-135b enhances bone metastasis in prostate cancer and predicts aggressiveness in human prostate samples. Cancers (Basel). 13:62022021. View Article : Google Scholar : PubMed/NCBI | |
Aigner A and Fischer D: Nanoparticle-mediated delivery of small RNA molecules in tumor therapy. Pharmazie. 71:27–34. 2016.PubMed/NCBI | |
Oh-Hohenhorst SJ and Lange T: Role of metastasis-related microRNAs in prostate cancer progression and treatment. Cancers (Basel). 13:44922021. View Article : Google Scholar : PubMed/NCBI | |
Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D and Sincic N: miRNA in prostate cancer: Challenges toward translation. Epigenomics. 12:543–558. 2020. View Article : Google Scholar : PubMed/NCBI | |
Locati MD, Terpstra I, de Leeuw WC, Kuzak M, Rauwerda H, Ensink WA, van Leeuwen S, Nehrdich U, Spaink HP, Jonker MJ, et al: Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization. Nucleic Acids Res. 43:e892015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, Shen B and Guo F: Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med. 12:662014. View Article : Google Scholar : PubMed/NCBI | |
Pashaei E, Pashaei E, Ahmady M, Ozen M and Aydin N: Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One. 12:e01795432017. View Article : Google Scholar : PubMed/NCBI | |
Sottnik JL and Keller ET: Understanding and targeting osteoclastic activity in prostate cancer bone metastases. Curr Mol Med. 13:626–639. 2013. View Article : Google Scholar : PubMed/NCBI | |
Macherey S, Monsef I, Jahn F, Jordan K, Yuen KK, Heidenreich A and Skoetz N: Bisphosphonates for advanced prostate cancer. Cochrane Database Syst Rev. 12:Cd0062502017.PubMed/NCBI | |
Elomaa I, Kylmälä T, Tammela T, Viitanen J, Ottelin J, Ruutu M, Jauhiainen K, Ala-Opas M, Roos L, Seppänen J, et al: Effect of oral clodronate on bone pain. A controlled study in patients with metastic prostatic cancer. Int Urol Nephrol. 24:159–166. 1992. View Article : Google Scholar : PubMed/NCBI | |
Vorreuther R, Klotz T and Engelking R: Clodronate in the palliative therapy of bone-metastasized prostatic carcinoma. Urologe A. 31:63–66. 1992.(In German). PubMed/NCBI | |
Adami S and Mian M: Clodronate therapy of metastatic bone disease in patients with prostatic carcinoma. Recent Results Cancer Res. 116:67–72. 1989. View Article : Google Scholar : PubMed/NCBI | |
Strang P, Nilsson S, Brändstedt S, Sehlin J, Borghede G, Varenhorst E, Bandman U, Borck L, Englund G and Selin L: The analgesic efficacy of clodronate compared with placebo in patients with painful bone metastases from prostatic cancer. Anticancer Res. 17:4717–4721. 1997.PubMed/NCBI | |
Kylmälä T, Taube T, Tammela TL, Risteli L, Risteli J and Elomaa I: Concomitant i.v. and oral clodronate in the relief of bone pain-a double-blind placebo-controlled study in patients with prostate cancer. Br J Cancer. 76:939–942. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ernst DS, Tannock IF, Winquist EW, Venner PM, Reyno L, Moore MJ, Chi K, Ding K, Elliott C and Parulekar W: Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol. 21:3335–3342. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mason MD, Sydes MR, Glaholm J, Langley RE, Huddart RA, Sokal M, Stott M, Robinson AC, James ND, Parmar MK, et al: Oral sodium clodronate for nonmetastatic prostate cancer-results of a randomized double-blind placebo-controlled trial: Medical research council PR04 (ISRCTN61384873). J Natl Cancer Inst. 99:765–776. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dearnaley DP, Sydes MR, Mason MD, Stott M, Powell CS, Robinson AC, Thompson PM, Moffat LE, Naylor SL and Parmar MK; Mrc Pr05 Collaborators, : A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 trial). J Natl Cancer Inst. 95:1300–1311. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dearnaley DP, Mason MD, Parmar MK, Sanders K and Sydes MR: Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: Long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 10:872–876. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lipton A, Glover D, Harvey H, Grabelsky S, Zelenakas K, Macerata R and Seaman J: Pamidronate in the treatment of bone metastases: Results of 2 dose-ranging trials in patients with breast or prostate cancer. Ann Oncol. 5 (Suppl 7):S31–S35. 1994.PubMed/NCBI | |
Figg WD, Liu Y, Arlen P, Gulley J, Steinberg SM, Liewehr DJ, Cox MC, Zhai S, Cremers S, Parr A, et al: A randomized, phase II trial of ketoconazole plus alendronate versus ketoconazole alone in patients with androgen independent prostate cancer and bone metastases. J Urol. 173:790–796. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sweeney C, Dugan WM II, Dreicer R, Chu F, Parks G, Baker K, Reed D, Jansz K, Zadra J and Yiannoutsos CT: A randomized placebo-controlled trial of daily high-dose oral risedronate in men with metastatic prostate cancer commencing androgen deprivation therapy (ADT). J Clin Oncol. 28 (15 Suppl):e150002010. View Article : Google Scholar | |
Meulenbeld HJ, van Werkhoven ED, Coenen JL, Creemers GJ, Loosveld OJ, de Jong PC, Ten Tije AJ, Fosså SD, Polee M, Gerritsen W, et al: Randomised phase II/III study of docetaxel with or without risedronate in patients with metastatic castration resistant prostate cancer (CRPC), the Netherlands prostate study (NePro). Eur J Cancer. 48:2993–3000. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hahn NM, Yiannoutsos CT, Kirkpatrick K, Sharma J and Sweeney CJ: Failure to suppress markers of bone turnover on first-line hormone therapy for metastatic prostate cancer is associated with shorter time to skeletal-related event. Clin Genitourin Cancer. 12:33–40.e4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoskin P, Sundar S, Reczko K, Forsyth S, Mithal N, Sizer B, Bloomfield D, Upadhyay S, Wilson P, Kirkwood A, et al: A multicenter randomized trial of ibandronate compared with single-dose radiotherapy for localized metastatic bone pain in prostate cancer. J Natl Cancer Inst. 107:djv1972015. View Article : Google Scholar : PubMed/NCBI | |
Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA and Chen B; Zoledronic Acid Prostate Cancer Study Group, : A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 94:1458–1468. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abetz L, Barghout V, Arbuckle R, Bosch V, Shirina N and Saad F: Impact of zoledronic acid (Z) on pain in prostate cancer patients with bone metastases in a randomised placebo-control trial. J Clin Oncol. 24 (Suppl 18):S46382006. View Article : Google Scholar | |
Leto G, Badalamenti G, Arcara C, Crescimanno M, Flandina C, Tumminello FM, Incorvaia L, Gebbia N and Fulfaro F: Effects of zoledronic acid on proteinase plasma levels in patients with bone metastases. Anticancer Res. 26:23–26. 2006.PubMed/NCBI | |
Cózar Olmo JM, Carballido Rodriguez J, Luque Galvez P, Tabernero Gómez AG, Barreiro Mouro A, Sánchez Sánchez E, González Enguita C, Alcover García J, Garcia-Galisteo E, Abascal García JM, et al: Effectiveness and tolerability of zoledronic acid in the treatment of metastatic prostate cancer. Actas Urol Esp. 32:492–501. 2008.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA and Zheng M; Zoledronic Acid Prostate Cancer Study Group, : Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 96:879–882. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fulfaro F, Leto G, Badalamenti G, Arcara C, Cicero G, Valerio MR, Di Fede G, Russo A, Vitale A, Rini GB, et al: The use of zoledronic acid in patients with bone metastases from prostate carcinoma: Effect on analgesic response and bone metabolism biomarkers. J Chemother. 17:555–559. 2005. View Article : Google Scholar : PubMed/NCBI | |
Saad F: Clinical benefit of zoledronic acid for the prevention of skeletal complications in advanced prostate cancer. Clin Prostate Cancer. 4:31–37. 2005. View Article : Google Scholar : PubMed/NCBI | |
Saad F, Chen YM, Gleason DM and Chin J: Continuing benefit of zoledronic acid in preventing skeletal complications in patients with bone metastases. Clin Genitourin Cancer. 5:390–396. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saad F and Eastham J: Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urology. 76:1175–1181. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paparella S, Finkelberg E, Varisco D, Tondelli E and Rocco F: Use of zoledronic acid in patients with prostate cancer bone metastases: Control of pain and musculoskeletal complications. Urologia. 78:300–304. 2011.(In Italian). View Article : Google Scholar : PubMed/NCBI | |
Uemura H, Yanagisawa M, Ikeda I, Fujinami K, Iwasaki A, Noguchi S, Noguchi K and Kubota Y; Yokohama Bone Metastasis Study Group, : Possible anti-tumor activity of initial treatment with zoledronic acid with hormonal therapy for bone-metastatic prostate cancer in multicenter clinical trial. Int J Clin Oncol. 18:472–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Chen W, Chen H, Mo L, Jin H, Yu Z, Li C, Liu Q, Duan F and Weng Z: Comparison between zoledronic acid and clodronate in the treatment of prostate cancer patients with bone metastases. Med Oncol. 30:6572013. View Article : Google Scholar : PubMed/NCBI | |
Ueno S, Mizokami A, Fukagai T, Fujimoto N, Oh-Oka H, Kondo Y, Arai G, Ide H, Horie S, Ueki O, et al: Efficacy of combined androgen blockade with zoledronic acid treatment in prostate cancer with bone metastasis: The ZABTON-PC (zoledronic acid/androgen blockade trial on prostate cancer) study. Anticancer Res. 33:3837–3844. 2013.PubMed/NCBI | |
Chiang PH, Wang HC, Lai YL, Chen SC, Yen-Hwa W, Kok CK, Ou YC, Huang JS, Huang TC and Chao TY: Zoledronic acid treatment for cancerous bone metastases: A phase IV study in Taiwan. J Cancer Res Ther. 9:653–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Jin H, Chen W, Yu Z, Ye T, Zheng Y, Weng Z and Wang F: Docetaxel with or without zoledronic acid for castration-resistant prostate cancer. Int Urol Nephrol. 46:2319–2326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, Hauke RJ, Monk JP, Saylor P, Bhoopalam N, et al: Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: Results of CALGB 90202 (alliance). J Clin Oncol. 32:1143–1150. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wirth M, Tammela T, Cicalese V, Gomez Veiga F, Delaere K, Miller K, Tubaro A, Schulze M, Debruyne F, Huland H, et al: Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: Efficacy and safety results of the Zometa European Study (ZEUS). Eur Urol. 67:482–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
James ND, Pirrie SJ, Pope AM, Barton D, Andronis L, Goranitis I, Collins S, Daunton A, McLaren D, O'Sullivan J, et al: Clinical outcomes and survival following treatment of metastatic castrate-refractory prostate cancer with docetaxel alone or with strontium-89, zoledronic acid, or both: The TRAPEZE randomized clinical trial. JAMA Oncol. 2:493–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
Denham JW, Wilcox C, Joseph D, Spry NA, Lamb DS, Tai KH, Matthews J, Atkinson C, Turner S, Christie D, et al: Quality of life in men with locally advanced prostate cancer treated with leuprorelin and radiotherapy with or without zoledronic acid (TROG 03.04 RADAR): Secondary endpoints from a randomised phase 3 factorial trial. Lancet Oncol. 13:1260–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L, et al: Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): An open-label, randomised, phase 3 factorial trial. Lancet Oncol. 15:1076–1089. 2014. View Article : Google Scholar : PubMed/NCBI | |
Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L, et al: Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-Year results from a randomised, phase 3, factorial trial. Lancet Oncol. 20:267–281. 2019. View Article : Google Scholar : PubMed/NCBI |