Functions of circular RNAs and their potential applications in gastric cancer (Review)
- This article is part of the special Issue: Non-coding RNA at the Frontier of Early Diagnosis, Prognosis Evaluation, and Cancer Treatments
- Authors:
- Kuanyu Xia
- Zuzhen Wang
- Bing Liu
- Wenjun Wang
- Yang Liu
- Jianzhou Tang
- Jinpeng Yan
-
Affiliations: Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, P.R. China, Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410017, P.R. China, Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China - Published online on: April 12, 2023 https://doi.org/10.3892/ol.2023.13803
- Article Number: 217
This article is mentioned in:
Abstract
Shan C, Zhang Y, Hao X, Gao J, Chen X and Wang K: Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer. 18:1362019. View Article : Google Scholar : PubMed/NCBI | |
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto Y, Fishel R and Wickner RB: Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 87:7628–7632. 1990. View Article : Google Scholar : PubMed/NCBI | |
Cocquerelle C, Mascrez B, Hetuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI | |
Lei B, Tian Z, Fan W and Ni B: Circular RNA: A novel biomarker and therapeutic target for human cancers. Int J Med Sci. 16:292–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ouyang J, Long Z and Li G: Circular RNAs in gastric cancer: Potential biomarkers and therapeutic targets. Biomed Res Int. 2020:27906792020. View Article : Google Scholar : PubMed/NCBI | |
Yang CM, Qiao GL, Song LN, Bao S and Ma LJ: Circular RNAs in gastric cancer: Biomarkers for early diagnosis. Oncol Lett. 20:465–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH and Bindereif A: Exon circularization requires canonical splice signals. Cell Rep. 10:103–111. 2015. View Article : Google Scholar : PubMed/NCBI | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Jiang Z, Li T, Hu Y and Guo J: Circular RNAs in hepatocellular carcinoma: Functions and implications. Cancer Med. 7:3101–3109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Noto JJ, Schmidt CA and Matera AG: Engineering and expressing circular RNAs via tRNA splicing. RNA Biol. 14:978–984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A and Mayeda A: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34:e632006. View Article : Google Scholar : PubMed/NCBI | |
Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO and Salzman J: Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 9:e908592014. View Article : Google Scholar : PubMed/NCBI | |
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and Mirzaei H: Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu X, Wang L, Zhang Z, Li Z and Li M: Circ_PGPEP1 serves as a sponge of miR-1297 to promote gastric cancer progression via regulating E2F3. Dig Dis Sci. 66:4302–4313. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, et al: Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer. 18:1582019. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Xu J, Yang W, Wu N, Li F, Zhou L, Wang S, Li X, He AT, Du KY, et al: A neuroligin isoform translated by circnlgn contributes to cardiac remodeling. Circ Res. 129:568–582. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
Diallo LH, Tatin F, David F, Godet AC, Zamora A, Prats AC, Garmy-Susini B and Lacazette E: How are circRNAs translated by non-canonical initiation mechanisms? Biochimie. 164:45–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al: m(6)A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu D and Xu AD: Mini review: Circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet. 7:532016. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S and Wilusz JE: The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell. 68:940–954. e9432017. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Veno MT, Damgaard CK and Kjems J: Comparison of circular RNA prediction tools. Nucleic Acids Res. 44:e582016. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhang J and Zhao F: Circular RNA identification based on multiple seed matching. Brief Bioinform. 19:803–810. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 Circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clin Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, et al: Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 20:1420–1433. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kocks C, Boltengagen A, Piwecka M, Rybak-Wolf A and Rajewsky N: Single-molecule fluorescence in situ hybridization (FISH) of circular RNA CDR1as. Methods Mol Biol. 1724:77–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Rong Z, Zhang J, Zhu Z, Yu Z, Li T, Fu Z, Qiu Z and Huang C: Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer. 19:862020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang X, Li Z, Wang W, Li B, Huang X, Sun G, Xu J, Li Q, Xu Z, et al: Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer. Oncogene. 38:6985–7001. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhang J, Fu Z, Zhang B, Chen M, Ling X and Zou X: Gene microarray analysis of the circular RNAs expression profile in human gastric cancer. Oncol Lett. 15:9965–9972. 2018.PubMed/NCBI | |
Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B and Guo J: Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 6:1173–1180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dang Y, Ouyang X, Zhang F, Wang K, Lin Y, Sun B, Wang Y, Wang L and Huang Q: Circular RNAs expression profiles in human gastric cancer. Sci Rep. 7:90602017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wang K, Pei D and Xu H: Appraising circular RNAs as novel biomarkers for the diagnosis and prognosis of gastric cancer: A pair-wise meta-analysis. J Clin Lab Anal. 34:e233032020. View Article : Google Scholar : PubMed/NCBI | |
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and Winchester DP: The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin. 67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
Qiu S, Li B, Xia Y, Xuan Z, Li Z, Xie L, Gu C, Lv J, Lu C, Jiang T, et al: CircTHBS1 drives gastric cancer progression by increasing INHBA mRNA expression and stability in a ceRNA- and RBP-dependent manner. Cell Death Dis. 13:2662022. View Article : Google Scholar : PubMed/NCBI | |
Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang W and Cao H: CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer. 18:252019. View Article : Google Scholar : PubMed/NCBI | |
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of beta-catenin by promoting delta-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer. 18:452019. View Article : Google Scholar : PubMed/NCBI | |
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, Tang Q, Shan C, Lv Y, Zhang K, et al: CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer. 19:562020. View Article : Google Scholar : PubMed/NCBI | |
Henry NL and Hayes DF: Cancer biomarkers. Mol Oncol. 6:140–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Wei W, Xu H, Wang Z, Gao W, Wang T, Zheng Q, Shu Y and De W: Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark. 27:139–145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Kong S, Qin X and Ju S: Comprehensive assessment of plasma Circ_0004771 as a novel diagnostic and dynamic monitoring biomarker in gastric cancer. Onco Targets Ther. 13:10063–10074. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Qi C, Xi M and Ye G: Circular RNA hsa_circ_0001874 is an indicator for gastric cancer. J Clin Lab Anal. 35:e238512021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Chen S, Li T, Xiao B and Zhang X: Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal. 32:e223332018. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Fu K, Sun H, Rong D, Wang H and Cao H: CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer. 17:1372018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al: Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids. 13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guan E, Liu H and Xu N: Lidocaine suppresses gastric cancer development through Circ_ANO5/miR-21-5p/LIFR axis. Dig Dis Sci. 67:2244–2256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Jara CAS, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357:eaam85262017. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Lin X, He T and Xie G: Gambogic acid inhibits the progression of gastric cancer via circRNA_ASAP2/miR-33a-5p/CDK7 axis. Cancer Manag Res. 12:9221–9233. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhang Q and Guan B: Circ_0110805 knockdown enhances cisplatin sensitivity and inhibits gastric cancer progression by miR-299-3p/ENDOPDI axis. Onco Targets Ther. 13:11445–11457. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu J, Jiang M, Ni L and Ling Y: CircRNA DONSON contributes to cisplatin resistance in gastric cancer cells by regulating miR-802/BMI1 axis. Cancer Cell Int. 20:2612020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Yu X, Zhou B, Zhang J and Chang J: Circular RNA circ_0026359 enhances cisplatin resistance in gastric cancer via targeting miR-1200/POLD4 pathway. Biomed Res Int. 2020:51032722020.PubMed/NCBI | |
Xue M, Li G, Fang X, Wang L, Jin Y and Zhou Q: hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int. 19:252019. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Li Z, He Z, Wang W, Wang S, Zhang X, Cao J, Xu P, Wang H, Huang X, et al: Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res. 39:2462020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang Y, Li W and Liu X: Knockdown of cir_RNA PVT1 elevates gastric cancer cisplatin sensitivity via sponging miR-152-3p. J Surg Res. 261:185–195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deng P, Sun M, Zhao WY, Hou B, Li K, Zhang T and Gu F: Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J Gastroenterol. 27:487–500. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L, Li H, Wang R, Wang Z and Liu S: Circular RNA circ_ASAP2 regulates drug sensitivity and functional behaviors of cisplatin-resistant gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs. 32:950–961. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Guo P, Mu Q and Wang Y: Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 36:347–359. 2020.PubMed/NCBI | |
Liu YY, Zhang LY and Du WZ: Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep. 39:BSR201930452019. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Wang D, Ding Y, Tian G and Jiang B: Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p. Biotechnol Lett. 43:339–351. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Lv J, Xuan Z, Li B, Li Z, He Z, Li F, Xu J, Wang S, Xia Y, et al: Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2-mediated autophagy. Clin Transl Med. 12:e7082022. View Article : Google Scholar : PubMed/NCBI |