Molecular subtyping in colorectal cancer: A bridge to personalized therapy (Review)
- Authors:
- Chunlin Wang
- Hao Zhang
- Yunxiao Liu
- Yuliuming Wang
- Hanqing Hu
- Guiyu Wang
-
Affiliations: Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China - Published online on: April 18, 2023 https://doi.org/10.3892/ol.2023.13816
- Article Number: 230
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Quirke P, Williams GT, Ectors N, Ensari A, Piard F and Nagtegaal I: The future of the TNM staging system in colorectal cancer: Time for a debate? Lancet Oncol. 8:651–657. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, et al: AJCC Cancer Staging Manual. 8th edition. Springer; New York, NY: 2017, View Article : Google Scholar | |
Bae JM, Kim JH and Kang GH: Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch Pathol Lab Med. 140:406–412. 2016. View Article : Google Scholar : PubMed/NCBI | |
National Cancer Institute (NCI), . Director's Challenge: Toward a molecular classification of tumors [J/0L]. https://grants.nih.gov/grants/guide/rfa-files/RFA-CA-98-027.html1999. | |
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, et al: Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 19:329–359. 2021. View Article : Google Scholar : PubMed/NCBI | |
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Garrido-Laguna I, et al: NCCN guidelines insights: rectal cancer, version 6.2020. J Natl Compr Canc Netw. 18:806–815. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cohen R, Pudlarz T, Delattre JF, Colle R and André T: Molecular targets for the treatment of metastatic colorectal cancer. Cancers (Basel). 12:23502020. View Article : Google Scholar : PubMed/NCBI | |
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lengauer C, Kinzler KW and Vogelstein B: Genetic instability in colorectal cancers. Nature. 386:623–627. 1997. View Article : Google Scholar : PubMed/NCBI | |
Miao T, Wang Z, Sang N, Xiong R and Cao S: Clinical significance of flow cytometric deoxyribonucleic acid measurements of deparaffinized specimens in bladder tumors. Eur Urol. 21:98–102. 1992. View Article : Google Scholar : PubMed/NCBI | |
Mitelman F, Johansson B, Mandahl N and Mertens F: Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet. 95:1–8. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zeng WJ, Liu GY, Xu J, Zhou XD, Zhang YE and Zhang N: Pathological characteristics, PCNA labeling index and DNA index in prognostic evaluation of patients with moderately differentiated hepatocellular carcinoma. World J Gastroenterol. 8:1040–1044. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Yamada H, Hayama T, Inoue E, Tamura J, et al: Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol. 30:2256–2264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li JA, Liu BC, Song Y and Chen X: Cyclin A2 regulates symmetrical mitotic spindle formation and centrosome amplification in human colon cancer cells. Am J Transl Res. 10:2669–2676. 2018.PubMed/NCBI | |
Grady WM: Genomic instability and colon cancer. Cancer Metastasis Rev. 23:11–27. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sunde L, Bisgaard ML, Soll-Johanning H, Jacobsen NO, Bolund L, Skouv J and Lynge E: Familial colorectal cancer, can it be identified by microsatellite instability and chromosomal instability? -A case-control study. Cancer Biomark. 5:197–205. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cisyk AL, Nugent Z, Wightman RH, Singh H and McManus KJ: Characterizing microsatellite instability and chromosome instability in interval colorectal cancers. Neoplasia. 20:943–950. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cisyk AL, Penner-Goeke S, Lichtensztejn Z, Nugent Z, Wightman RH, Singh H and McManus KJ: Characterizing the prevalence of chromosome instability in interval colorectal cancer. Neoplasia. 17:306–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walther A, Houlston R and Tomlinson I: Association between chromosomal instability and prognosis in colorectal cancer: A meta-analysis. Gut. 57:941–950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, et al: Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 553:467–472. 2018. View Article : Google Scholar : PubMed/NCBI | |
Orsetti B, Selves J, Bascoul-Mollevi C, Lasorsa L, Gordien K, Bibeau F, Massemin B, Paraf F, Soubeyran I, Hostein I, et al: Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer. 14:1212014. View Article : Google Scholar : PubMed/NCBI | |
Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M and Krämer A: Proteins required for centrosome clustering in cancer cells. Sci Transl Med. 2:33ra382010. View Article : Google Scholar : PubMed/NCBI | |
Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, Spierings DC, Lansdorp PM, Cleveland DW, Lambrechts D, et al: Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell. 40:313–322.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Raab MS, Breitkreutz I, Anderhub S, Ronnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, et al: GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res. 72:5374–5385. 2012. View Article : Google Scholar : PubMed/NCBI | |
Warner SL, Bearss DJ, Han H and Von Hoff DD: Targeting Aurora-2 kinase in cancer. Mol Cancer Ther. 2:589–595. 2003.PubMed/NCBI | |
Chen G, Bradford WD, Seidel CW and Li R: Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature. 482:246–250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pazdur R, Lassere Y, Soh LT, Ajani JA, Bready B, Soo E, Sugarman S, Patt Y, Abbruzzese JL and Levin B: Phase II trial of docetaxel (Taxotere) in metastatic colorectal carcinoma. Ann Oncol. 5:468–470. 1994. View Article : Google Scholar : PubMed/NCBI | |
Swanton C, Tomlinson I and Downward J: Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle. 5:818–823. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thibodeau SN, Bren G and Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 260:816–819. 1993. View Article : Google Scholar : PubMed/NCBI | |
Aaltonen LA, Peltomäki P, Mecklin JP, Järvinen H, Jass JR, Green JS, Lynch HT, Watson P, Tallqvist G, Juhola M, et al: Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54:1645–1648. 1994.PubMed/NCBI | |
Mori Y, Selaru FM, Sato F, Yin J, Simms LA, Xu Y, Olaru A, Deacu E, Wang S, Taylor JM, et al: The impact of microsatellite instability on the molecular phenotype of colorectal tumors. Cancer Res. 63:4577–4582. 2003.PubMed/NCBI | |
Seppälä TT, Böhm JP, Friman M, Lahtinen L, Väyrynen VM, Liipo TK, Ristimäki AP, Kairaluoma MV, Kellokumpu IH, Kuopio TH and Mecklin JP: Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer. 112:1966–1975. 2015. View Article : Google Scholar : PubMed/NCBI | |
Evrard C, Messina S, Sefrioui D, Frouin É, Auriault ML, Chautard R, Zaanan A, Jaffrelot M, De La Fouchardière C, Aparicio T, et al: Heterogeneity of mismatch repair status and microsatellite instability between primary tumour and metastasis and its implications for immunotherapy in colorectal cancers. Int J Mol Sci. 23:44272022. View Article : Google Scholar : PubMed/NCBI | |
Kazama Y, Watanabe T, Kanazawa T, Tanaka J, Tanaka T and Nagawa H: Microsatellite instability in poorly differentiated adenocarcinomas of the colon and rectum: Relationship to clinicopathological features. J Clin Pathol. 60:701–704. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M and Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 342:69–77. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Jen J, Vogelstein B and Hamilton SR: Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 145:148–156. 1994.PubMed/NCBI | |
Montminy EM, Zhou M, Maniscalco L, Heda R, Kim MK, Patel SG, Wu XC, Itzkowitz SH and Karlitz JJ: Shifts in the proportion of distant stage early-onset colorectal adenocarcinoma in the United States. Cancer Epidemiol Biomarkers Prev. 31:334–341. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, Cantor SB and Chang GJ: Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 150:17–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Dixon JG, Fiskum JM, Parekh HD, Sinicrope FA, Yothers G, Allegra CJ, Wolmark N, Haller D, Schmoll HJ, et al: Clinicopathological and molecular characteristics of early-onset stage III colon adenocarcinoma: An analysis of the ACCENT database. J Natl Cancer Inst. 113:1693–1704. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guastadisegni C, Colafranceschi M, Ottini L and Dogliotti E: Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. Eur J Cancer. 46:2788–2798. 2010. View Article : Google Scholar : PubMed/NCBI | |
Popat S, Hubner R and Houlston RS: Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar : PubMed/NCBI | |
NCCN Clinical Practice Guideline in Oncology, . Version 3.2021. Available at. Colon. Cancer.NCCN.org | |
NCCN Clinical Practice Guideline in Oncology, . Version 1.2021. Available at. Rectal. Cancer.NCCN.org | |
Kim ST, Lee J, Park SH, Park JO, Lim HY, Kang WK, Kim JY, Kim YH, Chang DK, Rhee PL, et al: Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol. 66:659–667. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koenig JL, Toesca DAS, Harris JP, Tsai CJ, Haraldsdottir S, Lin AY, Pollom EL and Chang DT: Microsatellite instability and adjuvant chemotherapy in stage II colon cancer. Am J Clin Oncol. 42:573–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
De'Angelis GL, Bottarelli L, Azzoni C, De'Angelis N, Leandro G, Di Mario F, Gaiani F and Negri F: Microsatellite instability in colorectal cancer. Acta Biomed. 89:97–101. 2018. | |
Taieb J, Svrcek M, Cohen R, Basile D, Tougeron D and Phelip JM: Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer. 175:136–157. 2022. View Article : Google Scholar : PubMed/NCBI | |
Coupez D, Hulo P, Touchefeu Y, Bossard C and Bennouna J: Pembrolizumab for the treatment of colorectal cancer. Expert Opin Biol Ther. 20:219–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L, Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Yoshino T, Jäger D, Andre T, Bendell JC, Wang R, Kang SP, Koshiji M and Diaz LA: KEYNOTE-164: Phase II study of pembrolizumab (MK-3475) for patients with previously treated, microsatellite instability-high advanced colorectal carcinoma. J Clin Oncol. 34 (Suppl 4):TPS7872016. View Article : Google Scholar | |
Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, et al: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 17:717–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Neil BH, Wallmark JM, Lorente D, Elez E, Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Stein MN, Abdul Razak AR, et al: Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 12:e01898482017. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23:659–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, Garcia-Alfonso P, Neyns B, Luppi G, Cardin DB, et al: First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: The phase II CheckMate 142 study. J Clin Oncol. 40:161–170. 2022. View Article : Google Scholar : PubMed/NCBI | |
Josef LH, Parikh AR, Spigel DR, Cohn AL, Yoshino T, Kochenderfer MD, Elez E, Shao SH, Deming DA, Holdridge RC, et al: Nivolumab (NIVO) + 5-fluorouracil/leucovorin/oxaliplatin (mFOLFOX6)/bevacizumab (BEV) versus mFOLFOX6/BEV for first-line (1L) treatment of metastatic colorectal cancer (mCRC): Phase 2 results from CheckMate 9X8. J Clin Oncol. 40 (Suppl 4):S82022. View Article : Google Scholar | |
Zhang C, Li D, Xiao B, Zhou C, Jiang W, Tang J, Li Y, Zhang R, Han K, Hou Z, et al: B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from Anti-PD-1 therapy. J Immunother. 45:187–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cohen R, Hain E, Buhard O, Guilloux A, Bardier A, Kaci R, Bertheau P, Renaud F, Bibeau F, Fléjou JF, et al: Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 5:551–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F and Scarpa A: ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann Oncol. 30:1232–1243. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hajirawala L and Barton JS: Diagnosis and management of lynch syndrome. Dis Colon Rectum. 62:403–405. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J, Danielsen HE, Oukrif D, et al: Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol. 108:1785–1793. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, Carethers JM, Dowell JM, Wasserman L, Compton C, Mayer RJ, et al: Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res. 63:1608–1614. 2003.PubMed/NCBI | |
Sinicrope FA, Rego RL, Halling KC, Foster N, Sargent DJ, La Plant B, French AJ, Laurie JA, Goldberg RM, Thibodeau SN and Witzig TE: Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology. 131:729–737. 2006. View Article : Google Scholar : PubMed/NCBI | |
Diep CB, Thorstensen L, Meling GI, Skovlund E, Rognum TO and Lothe RA: Genetic tumor markers with prognostic impact in Dukes' stages B and C colorectal cancer patients. J Clin Oncol. 21:820–829. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rowan A, Halford S, Gaasenbeek M, Kemp Z, Sieber O, Volikos E, Douglas E, Fiegler H, Carter N, Talbot I, et al: Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 3:1115–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sobral D, Martins M, Kaplan S, Golkaram M, Salmans M, Khan N, Vijayaraghavan R, Casimiro S, Fernandes A, Borralho P, et al: Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol. 5:9372022. View Article : Google Scholar : PubMed/NCBI | |
Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E, Gonzalez-Farre X, Muñoz M, Russnes HG, Helland A, et al: Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6:514–527. 2014. View Article : Google Scholar : PubMed/NCBI | |
Morris LG, Riaz N, Desrichard A, Şenbabaoğlu Y, Hakimi AA, Makarov V, Reis-Filho JS and Chan TA: Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 7:10051–10063. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stanta G and Bonin S: Overview on clinical relevance of intra-tumor heterogeneity. Front Med (Lausanne). 5:852018. View Article : Google Scholar : PubMed/NCBI | |
He WZ, Hu WM, Wang F, Rong YM, Yang L, Xie QK, Yang YZ, Jiang C, Qiu HJ, Lu JB, et al: Comparison of mismatch repair status between primary and matched metastatic sites in patients with colorectal cancer. J Natl Compr Canc Netw. 17:1174–1183. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Yu T, Li L, Zhang Q, Zhang S, Li B, Li X, Xiao W and Liu G: Intraindividual tumor heterogeneity of mismatch repair status in metastatic colorectal cancer. Appl Immunohistochem Mol Morphol. 31:84–93. 2023. View Article : Google Scholar : PubMed/NCBI | |
Costello JF, Frühwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomäki P, Lang JC, et al: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 24:132–138. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gardiner-Garden M and Frommer M: CpG islands in vertebrate genomes. J Mol Biol. 196:261–282. 1987. View Article : Google Scholar : PubMed/NCBI | |
Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M and Schübeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 39:457–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, et al: Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 22:271–282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI | |
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, et al: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 38:787–793. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M and Fuchs CS: Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 9:305–314. 2007. View Article : Google Scholar : PubMed/NCBI | |
Issa JP: CpG island methylator phenotype in cancer. Nat Rev Cancer. 4:988–993. 2004. View Article : Google Scholar : PubMed/NCBI | |
Samowitz WS: The CpG island methylator phenotype in colorectal cancer. J Mol Diagn. 9:281–283. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bae JM, Kim MJ, Kim JH, Koh JM, Cho NY, Kim TY and Kang GH: Differential clinicopathological features in microsatellite instability-positive colorectal cancers depending on CIMP status. Virchows Arch. 459:55–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M, Rosty C, Joshi AD, Stern MC, LeMarchand L, et al: Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomarkers Prev. 24:512–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, Giovannucci EL and Fuchs CS: CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 58:90–96. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Deng Z, Lang X, Jiang J, Xie K, Lu S, Hu Q, Huo Y, Xiong X, Zhu N and Zhang W: Meta-analysis of the prognostic and predictive role of the CpG island methylator phenotype in colorectal cancer. Dis Markers. 2022:42548622022. View Article : Google Scholar : PubMed/NCBI | |
Cha Y, Kim KJ, Han SW, Rhee YY, Bae JM, Wen X, Cho NY, Lee DW, Lee KH, Kim TY, et al: Adverse prognostic impact of the CpG island methylator phenotype in metastatic colorectal cancer. Br J Cancer. 115:164–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jover R, Nguyen TP, Pérez-Carbonell L, Zapater P, Payá A, Alenda C, Rojas E, Cubiella J, Balaguer F, Morillas JD, et al: 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology. 140:1174–1181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iacopetta B, Kawakami K and Watanabe T: Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: Is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol. 13:498–503. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jahan Z, Benthani FA, Currey N, Parker HW, Dahlstrom JE, Caldon CE and Kohonen-Corish MRJ: MCC gene silencing is a CpG island methylator phenotype-associated factor that predisposes colon cancer cells to irinotecan and olaparib. Cancers (Basel). 14:28592022. View Article : Google Scholar : PubMed/NCBI | |
Pawel K and Maria Małgorzata S: CpG island methylator phenotype-a hope for the future or a road to nowhere? Int J Mol Sci. 23:8302022. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, Young J, Walsh T, Ward R, Hawkins N, et al: Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br J Cancer. 85:692–696. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto T, Ohta M, Ikenoue T, Yamada A, Tada M, Fujishiro M, Ogura K, Yamaji Y, Okamoto M, Kanai F, et al: Macroscopic morphologic subtypes of laterally spreading colorectal tumors showing distinct molecular alterations. Int J Cancer. 127:1562–1569. 2010. View Article : Google Scholar : PubMed/NCBI | |
Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, et al: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 26:1626–1634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, et al: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671. 2009. View Article : Google Scholar : PubMed/NCBI | |
Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 369:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Osumi H, Shinozaki E, Suenaga M, Matsusaka S, Konishi T, Akiyoshi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M, et al: RAS mutation is a prognostic biomarker in colorectal cancer patients with metastasectomy. Int J Cancer. 139:803–811. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): A post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 17:1426–1434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Lenz HJ, Köhne CH, Heinemann V, Tejpar S, Melezinek I, Beier F, Stroh C, Rougier P, van Krieken JH and Ciardiello F: Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 33:692–700. 2015. View Article : Google Scholar : PubMed/NCBI | |
Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA, Schrag D, Greene C, O'Neil BH, Atkins JN, et al: Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA. 317:2392–2401. 2017. View Article : Google Scholar : PubMed/NCBI | |
Taieb J, Le Malicot K, Penault-Llorca FM, Bouche O, Shi Q, Thibodeau SN, Tabernero J, Mini E, Goldberg RM, Folprecht G, et al: Prognostic value of BRAF V600E and KRAS exon 2 mutations in microsatellite stable (MSS), stage III colon cancers (CC) from patients (pts) treated with adjuvant FOLFOX+/-cetuximab: A pooled analysis of 3934 pts from the PETACC8 and N0147 trials. J Clin Oncol. 33 (Suppl 15):S35072015. View Article : Google Scholar | |
Stintzing S, Wirapati P, Lenz HJ, Neureiter D, Fischer von Weikersthal L, Decker T, Kiani A, Kaiser F, Al-Batran S, Heintges T, et al: Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann Oncol. 30:1796–1803. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tejpar S, Bertagnolli M, Bosman F, Lenz HJ, Garraway L, Waldman F, Warren R, Bild A, Collins-Brennan D, Hahn H, et al: Prognostic and predictive biomarkers in resected colon cancer: Current status and future perspectives for integrating genomics into biomarker discovery. Oncologist. 15:390–404. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, Nishihara R, Liao X, Waldron L, Hoshida Y, Huttenhower C, et al: Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 61:847–854. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen KH, Lin YL, Liau JY, Tsai JH, Tseng LH, Lin LI, Liang JT, Lin BR, Hung JS, Chang YL, et al: BRAF mutation may have different prognostic implications in early- and late-stage colorectal cancer. Med Oncol. 33:392016. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, et al: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 29:2011–2019. 2011. View Article : Google Scholar : PubMed/NCBI | |
Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, Kaplan R, Quirke P, Seymour MT, Richman SD, et al: Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 20:5322–5330. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sinicrope FA, Shi Q, Allegra CJ, Smyrk TC, Thibodeau SN, Goldberg RM, Meyers JP, Pogue-Geile KL, Yothers G, Sargent DJ and Alberts SR: Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: A secondary analysis of 2 randomized clinical trials. JAMA Oncol. 3:472–480. 2017. View Article : Google Scholar : PubMed/NCBI | |
Birgisson H, Edlund K, Wallin U, Påhlman L, Kultima HG, Mayrhofer M, Micke P, Isaksson A, Botling J, Glimelius B and Sundström M: Microsatellite instability and mutations in BRAF and KRAS are significant predictors of disseminated disease in colon cancer. BMC Cancer. 15:1252015. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, et al: Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 367:1596–1606. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, et al: Molecular biomarkers for the evaluation of colorectal cancer: Guideline from the american society for clinical pathology, college of American pathologists, association for molecular pathology, and the American society of clinical oncology. J Clin Oncol. 35:1453–1486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Akinleye A, Avvaru P, Furqan M, Song Y and Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 6:882013. View Article : Google Scholar : PubMed/NCBI | |
Carew JS, Kelly KR and Nawrocki ST: Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol. 6:17–27. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Morikawa T, Lochhead P, Imamura Y, Kuchiba A, Yamauchi M, Nosho K, Qian ZR, Nishihara R, Meyerhardt JA, et al: Prognostic role of PIK3CA mutation in colorectal cancer: Cohort study and literature review. Clin Cancer Res. 18:2257–2268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tougeron D, Sha D, Manthravadi S and Sinicrope FA: Aspirin and colorectal cancer: Back to the future. Clin Cancer Res. 20:1087–1094. 2014. View Article : Google Scholar : PubMed/NCBI | |
Valtorta E, Martino C, Sartore-Bianchi A, Penaullt-Llorca F, Viale G, Risio M, Rugge M, Grigioni W, Bencardino K, Lonardi S, et al: Assessment of a HER2 scoring system for colorectal cancer: Results from a validation study. Mod Pathol. 28:1481–1491. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tu J, Yu Y, Liu W and Chen S: Significance of human epidermal growth factor receptor 2 expression in colorectal cancer. Exp Ther Med. 9:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kavanagh DO, Chambers G, O'Grady L, Barry KM, Waldron RP, Bennani F, Eustace PW and Tobbia I: Is overexpression of HER-2 a predictor of prognosis in colorectal cancer? BMC Cancer. 9:12009. View Article : Google Scholar : PubMed/NCBI | |
Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH and Lee HS: HER2 status in colorectal cancer: Its clinical significance and the relationship between HER2 gene amplification and expression. PLoS One. 9:e985282014. View Article : Google Scholar : PubMed/NCBI | |
Sveen A, Kopetz S and Lothe RA: Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat Rev Clin Oncol. 17:11–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siena S, Di Bartolomeo M, Raghav K, Masuishi T, Loupakis F, Kawakami H, Yamaguchi K, Nishina T, Fakih M, Elez E, et al: Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 22:779–789. 2021. View Article : Google Scholar : PubMed/NCBI | |
De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al: Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 11:753–762. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gil-Raga M, Jantus-Lewintre E, Gallach S, Giner-Bosch V, Frangi-Caregnato A, Safont-Aguilera MJ, Garde-Noguera J, Zorraquino-Pina E, Garcia-Martinez M and Camps-Herrero C: Molecular subtypes in early colorectal cancer associated with clinical features and patient prognosis. Clin Transl Oncol. 20:1422–1429. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ros J, Saoudi N, Salvà F, Baraibar I, Alonso G, Tabernero J and Elez E: Ongoing and evolving clinical trials enhancing future colorectal cancer treatment strategies. Expert Opin Investig Drugs. 31:235–247. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jass JR: Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 50:113–130. 2007. View Article : Google Scholar : PubMed/NCBI | |
De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, et al: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 19:614–618. 2013. View Article : Google Scholar | |
Ogino S and Goel A: Molecular classification and correlates in colorectal cancer. J Mol Diagn. 10:13–27. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mangi FH, Shaikh TA, Soria D, Waryah AM, Ujjan ID, Qureshi JN and Syed BM: Novel molecular classification of colorectal cancer and correlation with survival. Saudi J Biol Sci. 29:3929–3936. 2022. View Article : Google Scholar : PubMed/NCBI | |
Singh MP, Rai S, Pandey A, Singh NK and Srivastava S: Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 8:133–145. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ten Hoorn S, de Back TR, Sommeijer DW and Vermeulen L: Clinical value of consensus molecular subtypes in colorectal cancer: A systematic review and meta-analysis. J Natl Cancer Inst. 114:503–516. 2022. View Article : Google Scholar : PubMed/NCBI | |
Valenzuela G, Canepa J, Simonetti C, Solo de Zaldivar L, Marcelain K and González-Montero J: Consensus molecular subtypes of colorectal cancer in clinical practice: A translational approach. World J Clin Oncol. 12:1000–1008. 2021. View Article : Google Scholar : PubMed/NCBI | |
Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman H, McCann C, McLaughlin K, Nemeth Z, Syed N, et al: Transcriptional subtyping and CD8 immunohistochemistry identifies poor prognosis stage II/III colorectal cancer patients who benefit from adjuvant chemotherapy. JCO Precis Oncol. 2018.PO.17.00241. 2018. View Article : Google Scholar | |
Li Y, Yao Q, Zhang L, Mo S, Cai S, Huang D and Peng J: Immunohistochemistry-based consensus molecular subtypes as a prognostic and predictive biomarker for adjuvant chemotherapy in patients with stage II colorectal cancer. Oncologist. 25:e1968–e1979. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, Snel MH, Chresta CM, Rosenberg R, Nitsche U, et al: Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 134:552–562. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, Salto-Tellez M, Lawler M and McArt DG: Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget. 7:36632–36644. 2016. View Article : Google Scholar : PubMed/NCBI | |
Borelli B, Fontana E, Giordano M, Antoniotti C, Lonardi S, Bergamo F, Pietrantonio F, Morano F, Tamburini E, Boccaccino A, et al: Prognostic and predictive impact of consensus molecular subtypes and CRCAssigner classifications in metastatic colorectal cancer: A translational analysis of the TRIBE2 study. ESMO Open. 6:1000732021. View Article : Google Scholar : PubMed/NCBI | |
Del Rio M, Mollevi C, Bibeau F, Vie N, Selves J, Emile JF, Roger P, Gongora C, Robert J, Tubiana-Mathieu N, et al: Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies. Eur J Cancer. 76:68–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, Honda H, Yamada Y and Ishioka C: Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 9:18698–18711. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuki S, Gamoh M, Denda T, Takashima A, Takahashi S, Nakamura M, Ohori H, Yamaguchi T, Kobayashi Y, Baba H, et al: Analysis of consensus molecular subtypes (CMS) classification in the TRICOLORE trial: A randomized phase III trial of S-1 and irinotecan (IRI) plus bevacizumab (Bmab) versus mFOLFOX6 or CapeOX plus Bmab as first-line treatment for metastatic colorectal cancer (mCRC). J Clin Oncol. 38 (Suppl 4):S1692020. View Article : Google Scholar | |
Mooi JK, Wirapati P, Asher R, Lee CK, Savas P, Price TJ, Townsend A, Hardingham J, Buchanan D, Williams D, et al: The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: Molecular analysis of the AGITG MAX clinical trial. Ann Oncol. 29:2240–2246. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lenz HJ, Ou FS, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, Mayer RJ, Bertagnolli MM, Blanke CD, Zemla T, et al: Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: Results from CALGB/SWOG 80405 (alliance). J Clin Oncol. 37:1876–1885. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aderka D, Stintzing S and Heinemann V: Explaining the unexplainable: Discrepancies in results from the CALGB/SWOG 80405 and FIRE-3 studies. Lancet Oncol. 20:e274–e283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, Yu H, Qin G, Sircar A, Hernández VM, et al: Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 10:eaan54882018. View Article : Google Scholar : PubMed/NCBI | |
Mehrvarz Sarshekeh A, Lam M, Zorrilla IR, Holliday EB, Das P, Kee BK, Overman MJ, Parseghian CM, Shen JPYC, Tam A, et al: Consensus molecular subtype (CMS) as a novel integral biomarker in colorectal cancer: A phase II trial of bintrafusp alfa in CMS4 metastatic CRC. J Clin Oncol. 38 (15 Suppl):S40842020. View Article : Google Scholar | |
Eisenberg D, Marcotte EM, Xenarios I and Yeates TO: Protein function in the post-genomic era. Nature. 405:823–826. 2000. View Article : Google Scholar : PubMed/NCBI | |
von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S and Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 417:399–403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I and Kouzarides T: Role of RNA modifications in cancer. Nat Rev Cancer. 20:303–322. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg E: Proteome diversification by RNA editing. Methods Mol Biol. 2181:229–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al: Proteogenomic characterization of human colon and rectal cancer. Nature. 513:382–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li C, Sun YD, Yu GY, Cui JR, Lou Z, Zhang H, Huang Y, Bai CG, Deng LL, Liu P, et al: Integrated omics of metastatic colorectal cancer. Cancer Cell. 38:734–747.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J and Cervantes A: Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 72:372–401. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, Goel A and Wang X: Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 55:37–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Trinh A, Trumpi K, De Sousa EMF, Wang X, de Jong JH, Fessler E, Kuppen PJ, Reimers MS, Swets M, Koopman M, et al: Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin Cancer Res. 23:387–398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Banias L, Jung I, Chiciudean R and Gurzu S: From dukes-MAC staging system to molecular classification: Evolving concepts in colorectal cancer. Int J Mol Sci. 23:94552022. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Yang Z, Eshleman JR, Netto GJ and Lin MT: Molecular diagnostics for precision medicine in colorectal cancer: Current status and future perspective. Biomed Res Int. 2016:98506902016. View Article : Google Scholar : PubMed/NCBI | |
Drier Y and Domany E: Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes? PLoS One. 6:e177952011. View Article : Google Scholar : PubMed/NCBI | |
Ein-Dor L, Kela I, Getz G, Givol D and Domany E: Outcome signature genes in breast cancer: Is there a unique set? Bioinformatics. 21:171–178. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haury AC, Gestraud P and Vert JP: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One. 6:e282102011. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Chaudhary K and Garmire LX: More is better: Recent progress in multi-omics data integration methods. Front Genet. 8:842017. View Article : Google Scholar : PubMed/NCBI | |
Vucic EA, Thu KL, Robison K, Rybaczyk LA, Chari R, Alvarez CE and Lam WL: Translating cancer ‘omics’ to improved outcomes. Genome Res. 22:188–195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, et al: A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun. 5:38872014. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, et al: Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 171:540–556.e25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suo C, Hrydziuszko O, Lee D, Pramana S, Saputra D, Joshi H, Calza S and Pawitan Y: Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics. 31:2607–2613. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BK, Sia YY, Huang SK, Hoon DS, Liu ET, Hillmer A and Nagarajan N: Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 43:e442015. View Article : Google Scholar : PubMed/NCBI | |
Pavel AB, Sonkin D and Reddy A: Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. BMC Syst Biol. 10:162016. View Article : Google Scholar : PubMed/NCBI |