Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)
- Authors:
- Liqiang Zhong
- Yi Li
- Tobias Achu Muluh
- Yongsheng Wang
-
Affiliations: Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China, Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China - Published online on: May 16, 2023 https://doi.org/10.3892/ol.2023.13867
- Article Number: 281
-
Copyright: © Zhong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S and Li Y: Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol. 13:9542352022. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Yuan Y and Jiang X: Antibody and antibody fragments for cancer immunotherapy. J Control Release. 328:395–406. 2020. View Article : Google Scholar : PubMed/NCBI | |
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al: 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 21:581–590. 2015. View Article : Google Scholar : PubMed/NCBI | |
Breuning J, Philip B and Brown MH: Addition of the C-terminus of CD6 to a chimeric antigen receptor enhances cytotoxicity and does not compromise expression. Immunology. 156:130–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haddadi MH, Hajizadeh-Saffar E, Khosravi-Maharlooei M, Basiri M, Negahdari B and Baharvand H: Autoimmunity as a target for chimeric immune receptor therapy: A new vision to therapeutic potential. Blood Rev. 41:1006452020. View Article : Google Scholar : PubMed/NCBI | |
Jarosz-Biej M, Smolarczyk R, Cichoń T and Kułach N: Tumor Microenvironment as A ‘Game Changer’ in cancer radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar : PubMed/NCBI | |
Mansouri V, Yazdanpanah N and Rezaei N: The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy. Int Rev Immunol. 41:649–668. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E and Multhoff G: NK cells armed with chimeric antigen receptors (CAR): Roadblocks to successful development. Cells. 10:33902021. View Article : Google Scholar : PubMed/NCBI | |
Füchsl F and Krackhardt AM: Paving the way to solid tumors: Challenges and strategies for adoptively transferred transgenic T cells in the tumor microenvironment. Cancers (Basel). 14:41922022. View Article : Google Scholar : PubMed/NCBI | |
Brandjes BD and Davila ML: Adding chimeric antigen receptor-induced killer cells to the medical oncology shelf. J Clin Invest. 129:5077–5078. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara K, Kitaura M, Tsunei A, Kusabuka H, Ogaki E and Okada N: Structure of the signal transduction domain in second-generation CAR regulates the input efficiency of CAR signals. Int J Mol Sci. 22:24762021. View Article : Google Scholar : PubMed/NCBI | |
Krug C, Birkholz K, Paulus A, Schwenkert M, Schmidt P, Hoffmann N, Fey G, Abken H, Schuler G, Schuler-Thurner B, et al: Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunol Immunother. 64:1623–1635. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yadollahvandmiandoab R, Jalalizadeh M, Buosi K, Garcia-Perdomo HA and Reis LO: Immunogenic cell death role in urothelial cancer therapy. Curr Oncol. 29:6700–6713. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11:692021. View Article : Google Scholar : PubMed/NCBI | |
Wang L: Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Curr Res Transl Med. 70:1033202022. View Article : Google Scholar : PubMed/NCBI | |
Haslauer T, Greil R, Zaborsky N and Geisberger R: CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 22:89962021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhu L, Zhang H, Chen S and Xiao Y: CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol. 13:9271532022. View Article : Google Scholar : PubMed/NCBI | |
Qin VM, Haynes NM, D'Souza C, Neeson PJ and Zhu JJ: CAR-T plus radiotherapy: A promising combination for immunosuppressive tumors. Front Immunol. 12:8138322021. View Article : Google Scholar : PubMed/NCBI | |
Kulczycka M, Derlatka K, Tasior J, Lejman M and Zawitkowska J: CAR T-Cell therapy in children with solid tumors. J Clin Med. 2:23262023. View Article : Google Scholar | |
Qu J, Mei Q, Chen L and Zhou J: Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunol Immunother. 70:619–631. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS and Lizee G: Evolution of CD8+ T cell receptor (TCR) engineered therapies for the treatment of cancer. Cells. 10:23792021. View Article : Google Scholar : PubMed/NCBI | |
Gu R, Liu F, Zou D, Xu Y, Lu Y, Liu B, Liu W, Chen X, Liu K, Guo Y, et al: Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. J Hematol Oncol. 13:1222020. View Article : Google Scholar : PubMed/NCBI | |
Aldoss I and Forman SJ: How I treat adults with advanced acute lymphoblastic leukemia eligible for CD19-targeted immunotherapy. Blood. 135:804–813. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen YH, Zhang X, Cheng YF, Chen H, Mo XD, Yan CH, Chen Y, Han W, Sun YQ, Wang Y, et al: Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 22:755–761. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie D, Jin X, Sun R, Zhang M, Wang J, Xiong X, Zhang X and Zhao M: Relapse mechanism and treatment strategy after chimeric antigen receptor T-cell therapy in treating B-cell hematological malignancies. Technol Cancer Res Treat. 21:153303382211184132022. View Article : Google Scholar : PubMed/NCBI | |
Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z, Whitlock BM, Miele MM, et al: CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 568:112–116. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ledererova A, Dostalova L, Kozlova V, Peschelova H, Ladungova A, Culen M, Loja T, Verner J, Pospisilova S, Smida M and Mancikova V: Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro. J Immunother Cancer. 9:e0023522021. View Article : Google Scholar : PubMed/NCBI | |
Salter AI, Pont MJ and Riddell SR: Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood. 131:2621–2629. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Dotti G and Savoldo B: Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood. 127:3350–3359. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vander Mause ER, Atanackovic D, Lim CS and Luetkens T: Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends Biotechnol. 40:875–890. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weiss T, Weller M, Guckenberger M, Sentman CL and Roth P: NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78:1031–1043. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luan C, Zhou J, Wang H, Ma X, Long Z, Cheng X, Chen X, Huang Z, Zhang D, Xia R and Ge J: Case report: Local cytokine release syndrome in an acute lymphoblastic leukemia patient after treatment with chimeric antigen receptor T-cell therapy: A possible model, literature review and perspective. Front Immunol. 12:7071912021. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos DMC, Rejeski K, Winkelmann M, Liu L, Trinkner P, Günther S, Bücklein VL, Blumenberg V, Schmidt C, Kunz WG, et al: Increased visceral fat distribution and body composition impact cytokine release syndrome onset and severity after CD19 chimeric antigen receptor T-cell therapy in advanced B-cell malignancies. Haematologica. 107:2096–2107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Zhang H, Cao J, Zhang C, Liu H, Huang H, Cheng H, Qiao J, Wang Y, Wang Y, et al: Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 12:6113662021. View Article : Google Scholar : PubMed/NCBI | |
Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A and Sadelain M: CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 24:731–738. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wright CM, LaRiviere MJ, Baron JA, Uche C, Xiao Y, Arscott WT, Anstadt EJ, Barsky AR, Miller D, LaRose MI, et al: Bridging radiation therapy before commercial chimeric antigen receptor T-cell therapy for relapsed or refractory aggressive B-cell lymphoma. Int J Radiat Oncol Biol Phys. 108:178–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong R, Jiang S, Chen Y, Ma Y, Sun L, Xing C, Zhang S and Yu K: Prognostic significance of cytokine release syndrome in B cell hematological malignancies patients after chimeric antigen receptor T cell therapy. J Interferon Cytokine Res. 41:469–476. 2021. View Article : Google Scholar : PubMed/NCBI | |
Strati P, Ahmed S, Kebriaei P, Nastoupil LJ, Claussen CM, Watson G, Horowitz SB, Brown ART, Do B, Rodriguez MA, et al: Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4:3123–3127. 2020. View Article : Google Scholar : PubMed/NCBI | |
Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, et al: Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 24:739–748. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H and Zhao Y: Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 8:573–589. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sagnella SM, White AL, Yeo D, Saxena P, van Zandwijk N and Rasko JEJ: Locoregional delivery of CAR-T cells in the clinic. Pharmacol Res. 182:1063292022. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Liao C, Tang Y, Zhou C, Gao X and Sun J: Tuning the ignition of CAR: Optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 79:142021. View Article : Google Scholar : PubMed/NCBI | |
Kosti P, Opzoomer JW, Larios-Martinez KI, Henley-Smith R, Scudamore CL, Okesola M, Taher MYM, Davies DM, Muliaditan T, Larcombe-Young D, et al: Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep Med. 2:1002272021. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Rui W, Zhao X and Lin X: Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 18:1085–1095. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ and Guedan S: CAR-T cells Hit the tumor microenvironment: Strategies to overcome tumor escape. Front Immunol. 11:11092020. View Article : Google Scholar : PubMed/NCBI | |
Majidpoor J and Mortezaee K: Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol (Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI | |
He H, Liao Q, Zhao C, Zhu C, Feng M, Liu Z, Jiang L, Zhang L, Ding X, Yuan M, et al: Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer. 9:e0027552021. View Article : Google Scholar : PubMed/NCBI | |
Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou H, Gorrell KA, Au H, Jarvis BM, Wang P and Shen K: Evaluating CAR-T cell therapy in a Hypoxic 3D tumor model. Adv Healthc Mater. 8:e19000012019. View Article : Google Scholar : PubMed/NCBI | |
Karin N: The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol. 88:463–473. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park JA, Wang L and Cheung NV: Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol. 14:1422021. View Article : Google Scholar : PubMed/NCBI | |
Jiang A, Qin Y and Springer TA: Loss of LRRC33-dependent TGFβ1 activation enhances antitumor immunity and checkpoint blockade therapy. Cancer Immunol Res. 10:453–467. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siewe N and Friedman A: TGF-β inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS One. 16:e02526202021. View Article : Google Scholar : PubMed/NCBI | |
Jorquera-Cordero C, Lara P, Cruz LJ, Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L, Koning RI, Chan AB and de Araujo Junior RF: Extracellular vesicles from M1-polarized macrophages combined with hyaluronic acid and a β-blocker potentiate Doxorubicin's antitumor activity by downregulating tumor-associated macrophages in breast cancer. Pharmaceutics. 14:10682022. View Article : Google Scholar : PubMed/NCBI | |
Kos K, Salvagno C, Wellenstein MD, Aslam MA, Meijer DA, Hau CS, Vrijland K, Kaldenbach D, Raeven EAM, Schmittnaegel M, et al: Tumor-associated macrophages promote intratumoral conversion of conventional CD4+ T cells into regulatory T cells via PD-1 signalling. Oncoimmunology. 11:20632252022. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Leojo Musa A and Najafi M: TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res. 155:1047452020. View Article : Google Scholar : PubMed/NCBI | |
Donlon NE, Power R, Hayes C, Reynolds JV and Lysaght J: Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 502:84–96. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S and Najafi M: Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 86:1067612020. View Article : Google Scholar : PubMed/NCBI | |
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS and Nagrath D: Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer. 8:855–869. 2022. View Article : Google Scholar : PubMed/NCBI | |
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA and Núñez MI: CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 9:16512020. View Article : Google Scholar : PubMed/NCBI | |
Minn I, Rowe SP and Pomper MG: Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol. 20:e443–e451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sim AJ, Jain MD, Figura NB, Chavez JC, Shah BD, Khimani F, Lazaryan A, Krivenko G, Davila ML, Liu HD, et al: Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 105:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oertel M and Eich HT: Bridging before CAR T-cell therapy-a new opportunity for radiotherapy? Strahlenther Onkol. 197:1154–1156. 2021.(In German). View Article : Google Scholar : PubMed/NCBI | |
Shi LZ and Bonner JA: Bridging radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI | |
Singh AK and McGuirk JP: CAR T cells: Continuation in a revolution of immunotherapy. Lancet Oncol. 21:e168–e178. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Ruiz ME, Garasa S, Rodriguez I, Solorzano JL, Barbes B, Yanguas A, Teijeira A, Etxeberria I, Aristu JJ, Halin C, et al: Intercellular adhesion Molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium. Int J Radiat Oncol Biol Phys. 97:389–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhao Q, Zheng Z, Liu S, Meng L, Dong L and Jiang X: Vascular normalization in immunotherapy: A promising mechanisms combined with radiotherapy. Biomed Pharmacother. 139:1116072021. View Article : Google Scholar : PubMed/NCBI | |
Hauth F, Ho AY, Ferrone S and Duda DG: Radiotherapy to enhance chimeric antigen receptor T-cell therapeutic efficacy in solid tumors: A narrative review. JAMA Oncol. 7:1051–1059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yue HC, Han YW, Liu W, Xiong LG and Zhang JW: Relationship between the invasion of lymphocytes and cytokines in the tumor microenvironment and the interval after single brachytherapy hypofractionated radiotherapy and conventional fractionation radiotherapy in non-small cell lung Cancer. BMC Cancer. 20:8932020. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Moustafa M, Knoll M, Xu C, Furkel J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S, et al: Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell. 39:1388–403.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H and Umansky L: Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis. 37:301–313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li CG, He MR, Wu FL, Li YJ and Sun AM: Akt promotes irradiation-induced regulatory T-cell survival in hepatocellular carcinoma. Am J Med Sci. 346:123–127. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ji D, Song C, Li Y, Xia J, Wu Y, Jia J, Cui X, Yu S and Gu J: Combination of radiotherapy and suppression of Tregs enhances abscopal antitumor effect and inhibits metastasis in rectal cancer. J Immunother Cancer. 8:e0008262020. View Article : Google Scholar : PubMed/NCBI | |
Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S and van Berkel PH: CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother Cancer. 8:e0008602020. View Article : Google Scholar : PubMed/NCBI | |
Sia J, Hagekyriakou J, Chindris I, Albarakati H, Leong T, Schlenker R, Keam SP, Williams SG, Neeson PJ, Johnstone RW and Haynes NM: Regulatory T cells shape the differential impact of radiation dose-fractionation schedules on host innate and adaptive antitumor immune defenses. Int J Radiat Oncol Biol Phys. 111:502–514. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J and Jha SK: CAR T cells: Engineered immune cells to treat brain cancers and beyond. Mol Cancer. 22:222023. View Article : Google Scholar : PubMed/NCBI | |
Laurent PA, Morel D, Meziani L, Depil S and Deutsch E: Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology. 12:21580132023. View Article : Google Scholar : PubMed/NCBI | |
Demaria S, Guha C, Schoenfeld J, Morris Z, Monjazeb A, Sikora A, Crittenden M, Shiao S, Khleif S, Gupta S, et al: Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J Immunother Cancer. 9:e0020382021. View Article : Google Scholar : PubMed/NCBI | |
Pocaterra A, Catucci M and Mondino A: Adoptive T cell therapy of solid tumors: Time to team up with immunogenic chemo/radiotherapy. Curr Opin Immunol. 74:53–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ratnayake G, Reinwald S, Edwards J, Wong N, Yu D, Ward R, Smith R, Haydon A, Au PM, van Zelm MC and Senthi S: Blood T-cell profiling in metastatic melanoma patients as a marker for response to immune checkpoint inhibitors combined with radiotherapy. Radiother Oncol. 173:299–305. 2022. View Article : Google Scholar : PubMed/NCBI | |
DeSelm C, Palomba ML, Yahalom J, Hamieh M, Eyquem J, Rajasekhar VK and Sadelain M: Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther. 26:2542–2552. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morris EC, Neelapu SS, Giavridis T and Sadelain M: Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 22:85–96. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia N, Haopeng P, Gong JU, Lu J, Chen Z, Zheng Y, Wang Z, Sun YU, Yang Z, Hoffman RM and Liu F: Robo1-specific CAR-NK immunotherapy enhances efficacy of 125I seed brachytherapy in an orthotopic mouse model of human pancreatic carcinoma. Anticancer Res. 39:5919–5925. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kulzer L, Rubner Y, Deloch L, Allgäuer A, Frey B, Fietkau R, Dörrie J, Schaft N and Gaipl US: Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol. 11:328–336. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ and Yaromina A: Charged particle and conventional radiotherapy: Current implications as partner for immunotherapy. Cancers (Basel). 13:14682021. View Article : Google Scholar : PubMed/NCBI | |
Kadauke S, Myers RM, Li Y, Aplenc R, Baniewicz D, Barrett DM, Barz Leahy A, Callahan C, Dolan JG, Fitzgerald JC, et al: Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: A prospective clinical trial. J Clin Oncol. 39:920–930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chen C, Wang L, Jia Y and Qin Y: Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol. 13:10505222022. View Article : Google Scholar : PubMed/NCBI | |
Fang PQ, Gunther JR, Wu SY, Dabaja BS, Nastoupil LJ, Ahmed S, Neelapu SS and Pinnix CC: Radiation and CAR T-cell therapy in lymphoma: Future frontiers and potential opportunities for synergy. Front Oncol. 11:6486552021. View Article : Google Scholar : PubMed/NCBI | |
Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q, Chen X, Zhou M, Xia F, Ye A, et al: Radiation priming chimeric antigen receptor T-cell therapy in Relapsed/Refractory diffuse large B-cell lymphoma with high tumor burden. J Immunother. 43:32–37. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, Carrera-Haro MA, Ghasemzadeh A, Marciscano AE, Velarde E, et al: Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment. Cancer Immunol Res. 5:992–1004. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guha P, Heatherton KR, O'Connell KP, Alexander IS and Katz SC: Assessing the future of solid tumor immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI | |
Huan T, Li H and Tang B: Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol. 13:10335122022. View Article : Google Scholar : PubMed/NCBI | |
DeSelm C: The current and future role of radiation therapy in the era of CAR T-cell salvage. Br J Radiol. 94:202100982021. View Article : Google Scholar : PubMed/NCBI | |
Chitadze G and Kabelitz D: Immune surveillance in glioblastoma: Role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol. 96:e132012022. View Article : Google Scholar : PubMed/NCBI | |
Rana PS, Murphy EV, Kort J and Driscoll JJ: Road testing new CAR design strategies in multiple myeloma. Front Immunol. 13:9571572022. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A and Najafi M: Abscopal effect in radioimmunotherapy. Int Immunopharmacol. 85:1066632020. View Article : Google Scholar : PubMed/NCBI | |
Mortezaee K: Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J Biochem Mol Toxicol. 35:e227082021. View Article : Google Scholar : PubMed/NCBI | |
Belkahla S, Brualla JM, Fayd'herbe de Maudave A, Falvo P, Allende-Vega N, Constantinides M, Khan AUH, Coenon L, Alexia C, Mitola G, et al: The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep. 12:32342022. View Article : Google Scholar : PubMed/NCBI | |
Murty S, Haile ST, Beinat C, Aalipour A, Alam IS, Murty T, Shaffer TM, Patel CB, Graves EE, Mackall CL and Gambhir SS: Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology. 9:17573602020. View Article : Google Scholar : PubMed/NCBI | |
Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, et al: Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12:108–133. 2022. View Article : Google Scholar : PubMed/NCBI | |
Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL and Andreadis C: Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol. 96:1295–1312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI | |
Smith EL, Mailankody S, Staehr M, Wang X, Senechal B, Purdon TJ, Daniyan AF, Geyer MB, Goldberg AD, Mead E, et al: BCMA-targeted CAR T-cell therapy plus radiotherapy for the treatment of refractory myeloma reveals potential synergy. Cancer Immunol Res. 7:1047–1053. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ababneh HS, Abramson JS, Johnson PC and Patel CG: Assessing the role of radiotherapy in patients with refractory or relapsed high-grade B-cell lymphomas treated with CAR T-cell therapy. Radiother Oncol. 175:65–72. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saifi O, Breen WG, Lester SC, Rule WG, Stish B, Rosenthal A, Munoz J, Herchko SM, Murthy HS, Lin Y, et al: Does bridging radiation therapy affect the pattern of failure after CAR T-cell therapy in non-Hodgkin lymphoma? Radiother Oncol. 166:171–179. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Adams A, Sieg N, Heger JM, Gödel P, Kutsch N, Kaul D, Teichert M, von Tresckow B, Bücklein V, et al: Potential synergy between radiotherapy and CAR T-cells-a multicentric analysis of the role of radiotherapy in the combination of CAR T cell therapy. Radiother Oncol. 183:1095802023. View Article : Google Scholar : PubMed/NCBI | |
Abramson JS: Anti-CD19 CAR T-cell therapy for B-cell Non-Hodgkin lymphoma. Transfus Med Rev. 34:29–33. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P and Ganguly N: CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep. 42:2183–2195. 2019.PubMed/NCBI |