1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018:GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Qiu WW, Chen QY, Zheng WZ, He QC, Huang
ZN, Xie JW, Wang JB, Lin JX, Lu J, Cao LL, et al: Postoperative
follow-up for gastric cancer needs to be individualized according
to age, tumour recurrence pattern, and recurrence time. Eur J Surg
Oncol. 48:1790–1798. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jin Y, Xu Y, Li Y, Chen R and Cai W:
Integrative radiogenomics approach for risk assessment of
postoperative and adjuvant chemotherapy benefits for gastric cancer
patients. Front Oncol. 11:7552712021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang J, Zhong L, Zhou X, Chen D and Li R:
Value of multiphase contrast-enhanced CT with three-dimensional
reconstruction in detecting depth of infiltration, lymph node
metastasis, and extramural vascular invasion of gastric cancer. J
Gastrointest Oncol. 12:1351–1362. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meng Y, Huang X, Liu J, Chen J, Bu Z, Wu
G, Xie W, Jeen F, Huang L, Tian C, et al: A novel nomogram for
individually predicting of vascular invasion in gastric cancer.
Technol Cancer Res Treat. 20:153303382110049242021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gresta LT, Rodrigues-Júnior IA, de Castro
LP, Cassali GD and Cabral MM: Assessment of vascular invasion in
gastric cancer: A comparative study. World J Gastroenterol.
19:3761–3769. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang L, Chu W, Li M, Xu P, Wang M, Peng M,
Wang K and Zhang L: Radiomics in gastric cancer: First clinical
investigation to predict lymph vascular invasion and survival
outcome using 18F-FDG PET/CT images. Front Oncol.
12:8360982022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang S, Zou X, Li J, Zhang A, Zhu L, Hu X
and Li C: The application value of ceMDCT in the diagnosis of
gastric cancer extramural vascular invasion and its influencing
factors. J Healthc Eng. 2022:42396002022.PubMed/NCBI
|
9
|
Rodríguez-Perálvarez M, Luong TV, Andreana
L, Meyer T, Dhillon AP and Burroughs AK: A systematic review of
microvascular invasion in hepatocellular carcinoma: Diagnostic and
prognostic variability. Ann Surg Oncol. 20:325–339. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
McKinney SM, Sieniek M, Godbole V, Godwin
J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A,
et al: International evaluation of an AI system for breast cancer
screening. Nature. 577:89–94. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ehteshami Bejnordi B, Veta M, Johannes van
Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak
JAWM; the CAMELYON16 Consortium, ; Hermsen M, Manson QF, et al:
Diagnostic assessment of deep learning algorithms for detection of
lymph node metastases in women with breast cancer. JAMA.
318:2199–2210. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bera K, Braman N, Gupta A, Velcheti V and
Madabhushi A: Predicting cancer outcomes with radiomics and
artificial intelligence in radiology. Nat Rev Clin Oncol.
19:132–146. 2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
R Core Team, . R: A language and
environment for statistical computing. R Foundation for Statistical
Computing; Vienna, Austria: ISBN 3-900051-07-0. 2012, URL.
http://www.R-project.org/
|
14
|
RStudio Team, . RStudio: Integrated
Development for R. RStudio, Inc., Boston, MA. 2015.URL. http://www.rstudio.com/
|
15
|
Chong HH, Yang L, Sheng RF, Yu YL, Wu DJ,
Rao SX, Yang C and Zeng MS: Multi-scale and multi-parametric
radiomics of gadoxetate disodium-enhanced MRI predicts
microvascular invasion and outcome in patients with solitary
hepatocellular carcinoma ≤5 cm. Eur Radiol. 31:4824–4838. 2021.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiang F, Wei S, Liu X, Liang X, Yang L and
Yan S: Radiomics analysis of contrast-enhanced CT for the
preoperative prediction of microvascular invasion in mass-forming
intrahepatic cholangiocarcinoma. Front Oncol. 11:7741172021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tan X, Yang X, Hu S, Ge Y, Wu Q, Wang J
and Sun Z: Prediction of response to neoadjuvant chemotherapy in
advanced gastric cancer: A radiomics nomogram analysis based on CT
images and clinicopathological features. J Xray Sci Technol.
31:49–61. 2023.PubMed/NCBI
|
18
|
Wang R, Liang P, Yu J, Han YJ and Gao JB:
Diagnostic efficacy of a combined diagnostic model based on extreme
gradient boosting algorithm in differentiating the pathological
grading of gastric neuroendocrine neoplasms. Zhonghua Yi Xue Za
Zhi. 101:2717–2722. 2021.(In Chinese). PubMed/NCBI
|
19
|
Gao X, Ma T, Bai S, Liu Y, Zhang Y, Wu Y,
Li H and Ye Z: A CT-based radiomics signature for evaluating tumor
infiltrating Treg cells and outcome prediction of gastric cancer.
Ann Transl Med. 8:4692020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen XH, Ren K, Liang P, Chai YR, Chen KS
and Gao JB: Spectral computed tomography in advanced gastric
cancer: Can iodine concentration non-invasively assess
angiogenesis? World J Gastroenterol. 23:1666–1675. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liang P, Ren XC, Gao JB, Chen KS and Xu X:
Iodine concentration in spectral CT: Assessment of prognostic
determinants in patients with gastric adenocarcinoma. AJR Am J
Roentgenol. 209:1033–1038. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ahmed SA, Mourad AF, Hassan RA, Ibrahim
MAE, Soliman A, Aboeleuon E, Elbadee OMA, Hetta HF and Jabir MA:
Preoperative CT staging of borderline pancreatic cancer patients
after neoadjuvant treatment: Accuracy in the prediction of vascular
invasion and resectability. Abdom Radiol (NY). 46:280–289. 2021.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang L, Gu D, Wei J, Yang C, Rao S, Wang
W, Chen C, Ding Y, Tian J and Zeng M: A radiomics nomogram for
preoperative prediction of microvascular invasion in hepatocellular
carcinoma. Liver Cancer. 8:373–386. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li H, Li T, Hu J and Liu J: A nomogram to
predict microvascular invasion in early hepatocellular carcinoma. J
Cancer Res Ther. 17:652–657. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu X, Zhang HL, Liu QP, Sun SW, Zhang J,
Zhu FP, Yang G, Yan X, Zhang YD and Liu XS: Radiomic analysis of
contrast-enhanced CT predicts microvascular invasion and outcome in
hepatocellular carcinoma. J Hepatol. 70:1133–1144. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang YQ, Cao SE, Cao S, Chen JN, Wang GY,
Shi WQ, Deng YN, Cheng N, Ma K, Zeng KN, et al: Preoperative
identification of microvascular invasion in hepatocellular
carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol.
147:821–833. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hosny A, Parmar C, Quackenbush J, Schwartz
LH and Aerts HJWL: Artificial intelligence in radiology. Nat Rev
Cancer. 18:500–510. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu SC, Lai J, Huang JY, Cho CF, Lee PH,
Lu MH, Yeh CC, Yu J and Lin WC: Predicting microvascular invasion
in hepatocellular carcinoma: A deep learning model validated across
hospitals. Cancer Imaging. 21:562021. View Article : Google Scholar : PubMed/NCBI
|