Tumor organoid model of colorectal cancer (Review)
- Authors:
- Chi Yang
- Wangwen Xiao
- Rui Wang
- Yan Hu
- Ke Yi
- Xuan Sun
- Guanghui Wang
- Xiaohui Xu
-
Affiliations: Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China, Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China, School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China - Published online on: June 15, 2023 https://doi.org/10.3892/ol.2023.13914
- Article Number: 328
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong MCS, Huang J, Lok V, Wang J, Fung F, Ding H and Zheng ZJ: Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin Gastroenterol Hepatol. 19:955–966.e61. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nakayama M, Wang D, Kok SY, Oshima H and Oshima M: Genetic alterations and microenvironment that drive malignant progression of colorectal cancer: Lessons from mouse and organoid models. J Cancer Prev. 27:1–6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jeyakumar A, Dissabandara L and Gopalan V: A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. J Gastroenterol. 52:407–418. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zheng X, Zong X, Li Z, Li N, Hur J, Fritz CD, Chapman W Jr, Nickel KB, Tipping A, et al: Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 70:1147–1154. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roney MSI, Lanagan C, Sheng YH, Lawler K, Schmidt C, Nguyen NT, Begun J and Kijanka GS: IgM and IgA augmented autoantibody signatures improve early-stage detection of colorectal cancer prior to nodal and distant spread. Clin Transl Immunology. 10:e13302021. View Article : Google Scholar : PubMed/NCBI | |
DeStefanis RA, Kratz JD, Olson AM, Sunil A, DeZeeuw AK, Gillette AA, Sha GC, Johnson KA, Pasch CA, Clipson L, et al: Impact of baseline culture conditions of cancer organoids when determining therapeutic response and tumor heterogeneity. Sci Rep. 12:52052022. View Article : Google Scholar : PubMed/NCBI | |
Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R and Golub TR: Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 49:1567–1575. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Jiao Y, Qin S, Zhao W, Chu Q and Wu K: Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 7:302018. View Article : Google Scholar : PubMed/NCBI | |
Li M and Izpisua Belmonte JC: Organoids-Preclinical models of human disease. N Engl J Med. 380:569–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Gleyzer R, Tai WH, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang FW and Cahan P: Evaluating the transcriptional fidelity of cancer models. Genome Med. 13:732021. View Article : Google Scholar : PubMed/NCBI | |
Janakiraman H, Zhu Y, Becker SA, Wang C, Cross A, Curl E, Lewin D, Hoffman BJ, Warren GW, Hill EG, et al: Modeling rectal cancer to advance neoadjuvant precision therapy. Int J Cancer. 147:1405–1418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Veninga V and Voest EE: Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell. 39:1190–1201. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, Antonow D, Severino P and Bonorino C: Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl. 107:1102642020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yan C, Hu Y, Mu L, Huang K, Li Q, Li X, Tao D and Qin J: Sphere-forming assay vs. organoid culture: Determining long-term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol. 54:893–904. 2019.PubMed/NCBI | |
Lehmann R, Lee CM, Shugart EC, Benedetti M, Charo RA, Gartner Z, Hogan B, Knoblich J, Nelson CM and Wilson KM: Human organoids: A new dimension in cell biology. Mol Biol Cell. 30:1129–1137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Joshi R, Castro De Moura M, Piñeyro D, Alvarez-Errico D, Arribas C and Esteller M: The DNA methylation landscape of human cancer organoids available at the American type culture collection. Epigenetics. 15:1167–1177. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lancaster MA and Knoblich JA: Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345:12471252014. View Article : Google Scholar : PubMed/NCBI | |
Shirure VS, Hughes CCW and George SC: Engineering Vascularized Organoid-on-a-Chip Models. Annu Rev Biomed Eng. 23:141–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lancaster MA and Knoblich JA: Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 9:2329–2340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto S and Sato T: Establishment of 3D intestinal organoid cultures from intestinal stem cells. Methods Mol Biol. 1612:97–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Onishi N, Takami H, Seishima R, Inoue H, Hirata Y, Kameyama K, Tsuchihashi K, Sugihara E, Uchino S, et al: Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun. 497:783–789. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazzucchelli S, Piccotti F, Allevi R, Truffi M, Sorrentino L, Russo L, Agozzino M, Signati L, Bonizzi A, Villani L and Corsi F: Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Proced Online. 21:122019. View Article : Google Scholar : PubMed/NCBI | |
Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grützmann K, Sommer U, Schweitzer C, Schölch S, Uhlemann H, et al: Human gastric cancer modelling using organoids. Gut. 68:207–217. 2019. View Article : Google Scholar : PubMed/NCBI | |
Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK and Huch M: Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc. 11:1724–1743. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost N, Begthel H, et al: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 25:838–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM and Little MH: Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 526:564–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, Barendt WJ, Letchford L, Leyden GM, Goffin EK, et al: Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun. 9:29832018. View Article : Google Scholar : PubMed/NCBI | |
Christin JR and Shen MM: Modeling tumor plasticity in organoid models of human cancer. Trends Cancer. 8:161–163. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kakni P, Hueber R, Knoops K, López-Iglesias C, Truckenmüller R, Habibovic P and Giselbrecht S: Intestinal organoid culture in polymer film-based microwell arrays. Adv Biosyst. 4:e20001262020. View Article : Google Scholar : PubMed/NCBI | |
Stevens CE and Leblond CP: Rate of renewal of the cells of the intestinal epithelium in the rat. Anat Rec. 97:3731947.PubMed/NCBI | |
Li X, Larsson P, Ljuslinder I, Öhlund D, Myte R, Löfgren-Burström A, Zingmark C, Ling A, Edin S and Palmqvist R: Ex vivo organoid cultures reveal the importance of the tumor microenvironment for maintenance of colorectal cancer stem cells. Cancers (Basel). 12:9232020. View Article : Google Scholar : PubMed/NCBI | |
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ and Clevers H: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449:1003–1007. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, et al: Isolation and in vitro expansion of human colonic stem cells. Nat Med. 17:1225–1227. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grabinger T, Luks L, Kostadinova F, Zimberlin C, Medema JP, Leist M and Brunner T: Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5:e12282014. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fujii M, Matano M, Nanki K and Sato T: Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc. 10:1474–1485. 2015. View Article : Google Scholar : PubMed/NCBI | |
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie BY and Wu AW: Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chin Med J (Engl). 129:2469–2475. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, et al: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494:247–250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, et al: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32:2708–2721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amsterdam A, Raanan C, Schreiber L, Freyhan O, Schechtman L and Givol D: Localization of the stem cell markers LGR5 and Nanog in the normal and the cancerous human ovary and their inter-relationship. Acta Histochem. 115:330–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, van Es JH and Clevers H: Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods. 9:81–83. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M, Snippert H, van de Wetering M, Tan S, Van Es JH, Huch M, et al: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2:540–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, et al: Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 604:111–119. 2022. View Article : Google Scholar : PubMed/NCBI | |
Leung C, Tan SH and Barker N: Recent advances in Lgr5+ stem cell research. Trends Cell Biol. 28:380–391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schutgens F and Clevers H: Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol. 15:211–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, Zhang T, Pipalia NH, Chen HJ, Witherspoon M, et al: Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 23:878–884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daoud A and Múnera JO: Generation of human colonic organoids from human pluripotent stem cells. Methods Cell Biol. 159:201–227. 2020. View Article : Google Scholar : PubMed/NCBI | |
Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, et al: Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell. 21:51–64.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 18:827–838. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T and Sato T: Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 21:256–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, et al: Sequential cancer mutations in cultured human intestinal stem cells. Nature. 521:43–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan HHN, Siu HC, Ho SL, Yue SSK, Gao Y, Tsui WY, Chan D, Chan AS, Wong JWH, Man AHY, et al: Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut. 69:2165–2179. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, et al: Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA. 112:13308–13311. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Mao Y, Wang W, Zhou X, Wang W, Gao S, Li J, Wen L, Fu W and Tang F: Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis. Genome Biol. 23:1062022. View Article : Google Scholar : PubMed/NCBI | |
Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR and Mohammed S: Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Rep. 18:263–274. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, Lewis M, Stelzner M, Martín MG and Dunn JC: Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods. 19:961–969. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brown JW and Mills JC: Implantable synthetic organoid matrices for intestinal regeneration. Nat Cell Biol. 19:1307–1308. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sánchez-Rivera FJ, et al: In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol. 35:569–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barbáchano A, Fernández-Barral A, Bustamante-Madrid P, Prieto I, Rodríguez-Salas N, Larriba MJ and Muñoz A: Organoids and colorectal cancer. Cancers (Basel). 13:26572021. View Article : Google Scholar : PubMed/NCBI | |
Kapoor-Narula U and Lenka N: Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine. 157:1559682022. View Article : Google Scholar : PubMed/NCBI | |
Zeuner A, Todaro M, Stassi G and De Maria R: Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell. 15:692–705. 2014. View Article : Google Scholar : PubMed/NCBI | |
Punt CJA, Koopman M and Vermeulen L: From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 14:235–246. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al: Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 580:269–273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, et al: Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med. 14:932022. View Article : Google Scholar : PubMed/NCBI | |
Youk J, Kwon HW, Kim R and Ju YS: Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med. 53:1503–1511. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, et al: Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 556:457–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ono H, Arai Y, Furukawa E, Narushima D, Matsuura T, Nakamura H, Shiokawa D, Nagai M, Imai T, Mimori K, et al: Single-cell DNA and RNA sequencing reveals the dynamics of intra-tumor heterogeneity in a colorectal cancer model. BMC Biol. 19:2072021. View Article : Google Scholar : PubMed/NCBI | |
Demmers LC, Kretzschmar K, Van Hoeck A, Bar-Epraïm YE, van den Toorn HWP, Koomen M, van Son G, van Gorp J, Pronk A, Smakman N, et al: Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat Commun. 11:53382020. View Article : Google Scholar : PubMed/NCBI | |
Greaves M: Evolutionary determinants of cancer. Cancer Discov. 5:806–820. 2015. View Article : Google Scholar : PubMed/NCBI | |
McGranahan N and Swanton C: Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 168:613–628. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim SC, Park JW, Seo HY, Kim M, Park JH, Kim GH, Lee JO, Shin YK, Bae JM, Koo BK, et al: Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses. Adv Sci (Weinh). 9:e21033602022. View Article : Google Scholar : PubMed/NCBI | |
Jeong N, Kim SC, Park JW, Park SG, Nam KH, Lee JO, Shin YK, Bae JM, Jeong SY, Kim MJ and Ku JL: Multifocal organoids reveal clonal associations between synchronous intestinal tumors with pervasive heterogeneous drug responses. NPJ Genom Med. 7:422022. View Article : Google Scholar : PubMed/NCBI | |
Okamoto T, duVerle D, Yaginuma K, Natsume Y, Yamanaka H, Kusama D, Fukuda M, Yamamoto M, Perraudeau F, Srivastava U, et al: Comparative analysis of patient-matched PDOs revealed a reduction in OLFM4-Associated clusters in metastatic lesions in colorectal cancer. Stem Cell Reports. 16:954–967. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Tang P, Luo W, Zhang L, Li Y, Hu X, Ma X, Chen Y, Bao Y, He X, et al: Patient-Derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Adv Sci (Weinh). 9:e22040972022. View Article : Google Scholar : PubMed/NCBI | |
Fumagalli A, Drost J, Suijkerbuijk SJE, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, et al: Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 114:E2357–E2364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-Derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mullenders J, de Jongh E, Brousali A, Roosen M, Blom JPA, Begthel H, Korving J, Jonges T, Kranenburg O, Meijer R and Clevers HC: Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc Natl Acad Sci USA. 116:4567–4574. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang XW, Xia TL, Tang HC, Liu X, Han R, Zou X, Zhao YT, Chen MY and Li G: Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann Transl Med. 10:5262022. View Article : Google Scholar : PubMed/NCBI | |
Beato F, Reverón D, Dezsi KB, Ortiz A, Johnson JO, Chen DT, Ali K, Yoder SJ, Jeong D, Malafa M, et al: Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab Invest. 101:204–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma. 67:430–437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, Chan D, Chan AS, Ma S, Lam KO, et al: A Comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 23:882–897.e11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al: A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 180:188–204.e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Ma Y, Zheng Y, Su J and Huang G: Application progress of organoids in colorectal cancer. Front Cell Dev Biol. 10:8150672022. View Article : Google Scholar : PubMed/NCBI | |
Seidlitz T and Stange DE: Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 53:1459–1470. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Lee H, Kim D, Han SK, Ha D, Shin K and Kim S: Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 11:54852020. View Article : Google Scholar : PubMed/NCBI | |
Pasch CA, Favreau PF, Yueh AE, Babiarz CP, Gillette AA, Sharick JT, Karim MR, Nickel KP, DeZeeuw AK, Sprackling CM, et al: Patient-Derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res. 25:5376–5387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, et al: Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 11:eaay25742019. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Gong T, Wang Z, Wang Z, Lin X, Chen S, Sun C, Zhao W, Kong Y, Ai H, et al: Colorectal cancer organoid models uncover oxaliplatin-resistant mechanisms at single cell resolution. Cell Oncol (Dordr). 45:1155–1167. 2022.PubMed/NCBI | |
Lv T, Shen L, Xu X, Yao Y, Mu P, Zhang H, Wan J, Wang Y, Guan R, Li X, et al: Patient-derived tumor organoids predict responses to irinotecan-based neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Int J Cancer. 152:524–535. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hongmao S: A Practical Guide to Rational Drug Design. Woodhead Publishing; 2015 | |
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fielden MR and Kolaja KL: The role of early in vivo toxicity testing in drug discovery toxicology. Expert Opin Drug Saf. 7:107–110. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Rettenmeier E, Paszek M, Yueh MF, Tukey RH, Trottier J, Barbier O and Chen S: Crypt organoid culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metab Dispos. 45:748–754. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS and Farin HF: 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38:e1009282019. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kwon J, Shin HJ, Moon SM, Kim SB, Shin US, Han YH and Kim Y: Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient-derived organoids. Int J Oncol. 57:1307–1318. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, Menck K, Bleckmann A, Kalucka J, Khan S, et al: Effects of the Novel PFKFB3 Inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers (Basel). 13:10112021. View Article : Google Scholar : PubMed/NCBI | |
Weeber F, Ooft SN, Dijkstra KK and Voest EE: Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rae C, Amato F and Braconi C: Patient-Derived organoids as a model for cancer drug discovery. Int J Mol Sci. 22:34832021. View Article : Google Scholar : PubMed/NCBI | |
Costales-Carrera A, Fernández-Barral A, Bustamante-Madrid P, Guerra L, Cantero R, Barbáchano A and Muñoz A: Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3D Organoid Assay. Mar Drugs. 17:6482019. View Article : Google Scholar : PubMed/NCBI | |
Zerp SF, Bibi Z, Verbrugge I, Voest EE and Verheij M: Enhancing radiation response by a second-generation TRAIL receptor agonist using a new in vitro organoid model system. Clin Transl Radiat Oncol. 24:1–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Norkin M, Ordóñez-Morán P and Huelsken J: High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep. 35:1090262021. View Article : Google Scholar : PubMed/NCBI | |
Sailer V, Pauli C, Merzier EC, Mosquera JM, Beltran H, Rubin MA and Rao RA: On-site cytology for development of patient-derived three-dimensional organoid cultures-A pilot study. Anticancer Res. 37:1569–1573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, Chen H, Fujimoto J, Kugler K, Franklin WA, et al: Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. 10:768–777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CG, Szeglin BC, et al: Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res. 82:2298–2312. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cho YW, Min DW, Kim HP, An Y, Kim S, Youk J, Chun J, Im JP, Song SH, Ju YS, et al: Patient-derived organoids as a preclinical platform for precision medicine in colorectal cancer. Mol Oncol. 16:2396–2412. 2022. View Article : Google Scholar : PubMed/NCBI | |
Geevimaan K, Guo JY, Shen CN, Jiang JK, Fann CSJ, Hwang MJ, Shui JW, Lin HT, Wang MJ, Shih HC, et al: Patient-Derived organoid serves as a platform for personalized chemotherapy in advanced colorectal cancer patients. Front Oncol. 12:8834372022. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Pan W, Zheng H, Zheng H, Wang Z, Li JJ, Deng C and Yan J: Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage IV colorectal cancer: A blinded study. Dis Colon Rectum. 64:833–850. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bock C, Boutros M, Camp JG, Clarke L, Clevers H, Knoblich JA, Liberali P, Regev A, Rios AC, Stegle O, et al: The Organoid Cell Atlas. Nat Biotechnol. 39:13–17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Price S, Bhosle S, Gonçalves E, Li X, McClurg DP, Barthorpe S, Beck A, Hall C, Lightfoot H, Farrow L, et al: A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci Rep. 12:55712022. View Article : Google Scholar : PubMed/NCBI | |
Ji DB and Wu AW: Organoid in colorectal cancer: Progress and challenges. Chin Med J (Engl). 133:1971–1977. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marinucci M, Ercan C, Taha-Mehlitz S, Fourie L, Panebianco F, Bianco G, Gallon J, Staubli S, Soysal SD, Zettl A, et al: Standardizing patient-derived organoid generation workflow to avoid microbial contamination from colorectal cancer tissues. Front Oncol. 11:7818332022. View Article : Google Scholar : PubMed/NCBI | |
Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, et al: Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature. 545:234–237. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N, DelRio FW, Yavitt FM, Liberali P, Anseth KS and Lutolf MP: Tissue geometry drives deterministic organoid patterning. Science. 375:eaaw90212022. View Article : Google Scholar : PubMed/NCBI | |
Nikolaev M, Mitrofanova O, Broguiere N, Geraldo S, Dutta D, Tabata Y, Elci B, Brandenberg N, Kolotuev I, Gjorevski N, et al: Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 585:574–578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Heo JH, Kang D, Seo SJ and Jin Y: Engineering the extracellular matrix for organoid culture. Int J Stem Cells. 15:60–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rathje F, Klingler S and Aberger F: Organoids for Modeling (Colorectal) Cancer in a Dish. Cancers (Basel). 14:54162022. View Article : Google Scholar : PubMed/NCBI | |
Ng S, Tan WJ, Pek MMX, Tan MH and Kurisawa M: Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 219:1194002019. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Fong ELS, Zhu C, Lin QXX, Xiong M, Li A, Li T, Benoukraf T, Yu H and Liu S: Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 132:461–472. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tayler IM and Stowers RS: Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater. 132:4–22. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhang N and Liu YC: An organoids biobank for recapitulating tumor heterogeneity and personalized medicine. Chin J Cancer Res. 32:408–413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boers SN, van Delden JJM and Bredenoord AL: Organoids as hybrids: Ethical implications for the exchange of human tissues. J Med Ethics. 45:131–139. 2019. View Article : Google Scholar : PubMed/NCBI | |
Botti G, Di Bonito M and Cantile M: Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiol Pharmacol. 13:17–21. 2021.PubMed/NCBI | |
Wallaschek N, Niklas C, Pompaiah M, Wiegering A, Germer CT, Kircher S, Brändlein S, Maurus K, Rosenwald A, Yan HHN, et al: Establishing pure cancer organoid cultures: Identification, selection and verification of cancer phenotypes and genotypes. J Mol Biol. 431:2884–2893. 2019. View Article : Google Scholar : PubMed/NCBI | |
Driehuis E, Kretzschmar K and Clevers H: Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 15:3380–3409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Grigorian A and O'Brien CB: Hepatotoxicity secondary to chemotherapy. J Clin Transl Hepatol. 2:95–102. 2014.PubMed/NCBI | |
Fiore D, Ramesh P, Proto MC, Piscopo C, Franceschelli S, Anzelmo S, Medema JP, Bifulco M and Gazzerro P: Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Front Pharmacol. 8:9492018. View Article : Google Scholar : PubMed/NCBI | |
Idris M, Alves MM, Hofstra RMW, Mahe MM and Melotte V: Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer. 1876:1885862021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Tavakoli H, Ma L and Li X, Han L and Li X: Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev. 187:1143652022. View Article : Google Scholar : PubMed/NCBI | |
Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
LeSavage BL, Suhar RA, Broguiere N, Lutolf MP and Heilshorn SC: Next-generation cancer organoids. Nat Mater. 21:143–159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bulin AL and Hasan T: Spatiotemporal tracking of different cell populations in cancer organoid models for investigations on photodynamic therapy. Methods Mol Biol. 2451:81–90. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR and Farin HF: A Wnt-Induced phenotypic switch in cancer-associated fibroblasts inhibits EMT in colorectal cancer. Cancer Res. 80:5569–5582. 2020. View Article : Google Scholar : PubMed/NCBI | |
Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, Sakamoto H, Kubo T, Matsumoto K, Ochiai A and Imai T: Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep. 11:20772021. View Article : Google Scholar : PubMed/NCBI | |
Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF and Zachos NC: A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep. 7:452702017. View Article : Google Scholar : PubMed/NCBI | |
Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI | |
Frenkel N, Poghosyan S, Alarcón CR, García SB, Queiroz K, van den Bent L, Laoukili J, Rinkes IB, Vulto P, Kranenburg O and Hagendoorn J: Long-Lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model. ACS Biomater Sci Eng. 7:3030–3042. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sontheimer-Phelps A, Hassell BA and Ingber DE: Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 19:65–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ and Ingber DE: Microfluidic Organ-on-a-Chip models of human intestine. Cell Mol Gastroenterol Hepatol. 5:659–668. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Li Z and Guo J, Liu S and Guo J: Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron. 216:1146262022. View Article : Google Scholar : PubMed/NCBI | |
Park SE, Georgescu A and Huh D: Organoids-on-a-chip. Science. 364:960–965. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takebe T, Zhang B and Radisic M: Synergistic engineering: Organoids Meet Organs-on-a-Chip. Cell Stem Cell. 21:297–300. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH and Reiner O: Human brain organoids on a chip reveal the physics of folding. Nat Phys. 14:515–522. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, et al: Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA. 114:E2293–E2302. 2017.PubMed/NCBI | |
Skardal A, Shupe T and Atala A: Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 21:1399–1411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rajasekar S, Lin DSY, Abdul L, Liu A, Sotra A, Zhang F and Zhang B: IFlowPlate-A Customized 384-Well Plate for the culture of perfusable vascularized colon organoids. Adv Mater. 32:e20029742020. View Article : Google Scholar : PubMed/NCBI | |
Pinho D, Santos D, Vila A and Carvalho S: Establishment of colorectal cancer organoids in microfluidic-based system. Micromachines (Basel). 12:4972021. View Article : Google Scholar : PubMed/NCBI |